Advanced Search
ZHANG Gang, XU Zilong, WANG Kaifei, ZHU Ming, SHI Yu. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 75-81. DOI: 10.12073/j.hjxb.20210524003
Citation: ZHANG Gang, XU Zilong, WANG Kaifei, ZHU Ming, SHI Yu. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 75-81. DOI: 10.12073/j.hjxb.20210524003

Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process

More Information
  • Received Date: May 23, 2021
  • Accepted Date: January 27, 2022
  • Available Online: January 27, 2022
  • In view of the technical requirements for rapid and reliable automatic welding repairment of defects such as corrosion cracks in the dissolver for spent fuel reprocessing, a direct current added-high-frequency pulsedd tungsten inert gas arc welding method was developed in this paper, and a series of bead on plate welding experiments with 10 and 16 mm thick plate were performed. Taking the variations of arc-weld pool characteristic as the research object, the arc characteristic, and the flow behavior and the temperature field evolution of weld pool of pulsedd TIG with adding direct current and without were compared, respectively. The mechanism of increasing weld penetration was discussed. The results show that the high-frequency pulsed current makes the arc to produce electromagnetic contraction, and the compressed degree and the weld penetration positively correlates to the pulsed frequency (1 ~ 5 kHz); the reason of the penetration increase in the direct current added- high-frequency pulsed welding process is that the direct current added pulsed arc increases the arc current and energy density and rises the surface liquid metal temperature of weld pool, and increases the electromagnetic stirring force of the molten pool to improve the flow intensify of molten pool, sufficient convection heat exchange, and enhances the thermal inertia of the molten pool, finally. This method is able to reliably realize the one-sided welding and back formation of the butt joint of 5 mm thick stainless-steel plates.
  • 张瀛, 王桂敏, 戴文博, 等. 我国乏燃料后处理项目公众沟通策略研究[J]. 核安全, 2021, 19(6): 86 − 92.

    Zhang Ying, Wang Guimin, Dai Wenbo, et al. Research on public communication strategy of spent fuel reprocessing project in China[J]. Nuclear Safety, 2021, 19(6): 86 − 92.
    叶国安, 郑卫芳, 何辉, 等. 我国核燃料后处理技术现状和发展[J]. 原子能科学技术, 2020, 54(S1): 75 − 83.

    Ye Guoan, Zheng Weifang, He Hui, et al. Status and development of technology on reprocessing spent nuclear fuel in China[J]. Atomic Energy Science and Technology, 2020, 54(S1): 75 − 83.
    Wu X. On residual stress analysis and microstructural evolution for stainless steel type 304 spent nuclear fuel canisters weld joint: Numerical and experimental studies[J]. Journal of Nuclear Materials, 2020, 534: 152131 − 152142. doi: 10.1016/j.jnucmat.2020.152131
    李春凯, 席保龙, 石玗, 等. 氟化物活性TIG焊电弧特征的光谱分析[J]. 焊接学报, 2021, 42(8): 54 − 58. doi: 10.12073/j.hjxb.20210201002

    Li Chunkai, Xi Baolong, Shi Yu, et al. Spectral analysis of A-TIG welding arc with fluorides activating flux[J]. Transactions of the China Welding Institution, 2021, 42(8): 54 − 58. doi: 10.12073/j.hjxb.20210201002
    Sahoo A, Tripathy S. Improvement in depth of weld penetration during TIG, activated-TIG, and pulsed TIG welding: a review[J]. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2021, 11(2): 68 − 86. doi: 10.4018/IJMMME.2021040105
    Cui S, Liu Z, Fang Y, et al. Keyhole process in K-TIG welding on 4 mm thick 304 stainless steel[J]. Journal of Materials Processing Technology, 2017, 243: 217 − 228. doi: 10.1016/j.jmatprotec.2016.12.027
    Shang L, Zu M, Xing C, et al. Influence of cusp magnetic field configuration on K-TIG welding arc penetration behavior[J]. Journal of Manufacturing Processes, 2020, 53: 229 − 237. doi: 10.1016/j.jmapro.2020.02.027
    韩晓辉, 赵延强, 杨晓益, 等. 不锈钢激光-MAG复合焊接头成型规律及性能[J]. 西南交通大学学报, 2017, 52(5): 956 − 961. doi: 10.3969/j.issn.0258-2724.2017.05.016

    Han Xiaohui, Zhao Yanqiang, Yang Xiaoyi, et al. Forming rules and performances of laser-MAG hybrid welding joints of SUS301L-MT stainless steel[J]. Journal of Southwest Jiaotong University, 2017, 52(5): 956 − 961. doi: 10.3969/j.issn.0258-2724.2017.05.016
    Han Y, Han J, Chen Y, et al. Stability of fiber laser-MIG hybrid welding of high strength aluminum alloy[J]. China Welding, 2021, 30(3): 7 − 11.
    齐铂金, 许海鹰, 张伟. 0Crl8Ni9Ti超音频脉冲TIG焊接头组织与性能[J]. 北京航空航天大学学报, 2009, 35(2): 132 − 136.

    Qi Bojin, Xu Haiying, Zhang Wei. Microstructure and property analysis of 0Cr18Ni9Ti joints welded by ultra-sonic pulse tungsten-inert-gas welding technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 132 − 136.
    齐铂金, 杨舟, 杨明轩, 等. 超高频脉冲GTAW工艺特性分析[J]. 机械工程学报, 2016, 52(2): 26 − 32. doi: 10.3901/JME.2016.02.026

    Qi Bojin, Yang Zhou, Yang Mingxuan, et al. Analysis on characteristic of ultra-high frequency pulsed gas tungsten arc welding process[J]. Journal of Mechanical Engineering, 2016, 52(2): 26 − 32. doi: 10.3901/JME.2016.02.026
    Yang M, Zheng H, Li L, et al. Arc shape characteristics with ultra -high-frequency pulsed arc welding[J]. Applied Sciences, 2017, 7(1): 45 − 51. doi: 10.3390/app7010045
    赵家瑞, 张选明. 高频脉冲TIG焊电弧的阳极行为[J]. 焊接学报, 1992, 13(1): 59 − 66.

    Zhao Jiarui, Zhang Xuanming. Anode behavior of high frequency pulse TIG welding arc[J]. Transactions of the China Welding Institution, 1992, 13(1): 59 − 66.
    Zheng H, Qi B, Yang M. Dynamic analysis of the ultrasonic -frequency pulsed GMAW metal transfer process[J]. Journal of Manufacturing Processes, 2021, 62(9-12): 283 − 290.
  • Related Articles

    [1]CAI Jiasi, WANG Wen, GAO Jianxin, JIN Hongxi, WEI Yanhong. Effect of oscillating laser welding parameters on energy distribution and joint forming of 5A06 thick plate aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 48-58. DOI: 10.12073/j.hjxb.20231105001
    [2]FANG Disheng, FAN Yuanyuan, HUANG Ruisheng, XU Fujia, PEI Liang, LI Jiashi. Microstructure and properties of thick 5A06 aluminum alloy by 10 kW level oscillated laser welding at vertical up position[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 68-76. DOI: 10.12073/j.hjxb.20230614005
    [3]TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
    [4]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei. Analysis on Influencing Mechanism of Periodical Ultrasound on Formation of TIG Weld of Aluminum Alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 9-12.
    [5]HAN Yongquan, HONG Haitao, SHI Zengjie, YAO Qinghu. Mechanism of weld formation in laser beam-variable polarity plasma arc hybrid heating source welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 5-8.
    [6]YAN Keng, GAO Lihua, YANG Gang, XIAO Hailin. Effect of single-component activating flux on weld morphologies in A-TIG welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (2): 54-57,62.
    [7]YANG Jing, LI Xiaoyan, GONG Shuili, CHEN Li, XU Fei. Characteristics of aluminium-lithium alloy joint formed by YAG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 83-86.
    [8]GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73.
    [9]WANG Xuyou, WANG Wei, LIN Shangyang. Effect of welding parameter on weld penetration in laser-MIG hybrid welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 13-16.
    [10]YAO Wei, GONG Shui-li, CHEN Li. Effect of energy parameters on weld shaping for hybrid laser plasma welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (9): 81-84.

Catalog

    Article views (358) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return