Advanced Search
ZENG Min, YE Qiujin, LI Yang, HU Zixin. Simulation and design of variable polarity GMAW welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001
Citation: ZENG Min, YE Qiujin, LI Yang, HU Zixin. Simulation and design of variable polarity GMAW welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(11): 83-89. DOI: 10.12073/j.hjxb.20210524001

Simulation and design of variable polarity GMAW welding power source

More Information
  • Received Date: May 23, 2021
  • Accepted Date: December 20, 2021
  • Available Online: December 27, 2021
  • A variable-polarity gas metal arc welding (VP GMAW) welding power supply based on STM32F405 is built to solve the problems of high-heat input and easy deformation for the metal sheet, which is applied to adjust the heat input through modulating the duration of EN/EP and the amplitude of output current. The mathematical model of a second inverting stage with coupling inductance is established based on the analysis of the commutation of the output current. Besides, ideal output waveforms and a control method are developed to solve some problems in the process of variable-polarity (VP) welding. On the basis of the research above, a simulation model for verifying the feasibility of the control method provided is carried out to work as a good reference model for the design of a VP power supply. Compared with the experimental waveforms, the results show it lives up to the factual expectation. Finally, an experimental prototype of VP GMAW power supply is developed to perform a bead welding experiment on an 1 mm thick metal sheet. The result shows that the weld surface is smooth and regular, and there is still an effective and stable welding progress in case of the commutation of output current polarity.
  • Bo M A, Yan P, Bin J, et al. Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B[J]. Journal of Iron and Steel Research International, 2010, 17(8): 61 − 66. doi: 10.1016/S1006-706X(10)60130-6
    雷小伟, 杨瑞, 齐风华, 等. 先进的熔化极气体保护焊焊接技术发展[J]. 材料开发与应用, 2013, 28(2): 93 − 98.

    Lei Xiaowei, Yang Rui, Qi Fenghua, et al. Development of advanced GMAW technology[J]. Development and Application of Materials, 2013, 28(2): 93 − 98.
    Kah P, Suoranta R, Martikainen J. Advanced gas metal arc welding processes[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1-4): 655 − 674. doi: 10.1007/s00170-012-4513-5
    Jeong H, Park K, Baek S, et al. Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 729 − 737. doi: 10.1016/j.ijheatmasstransfer.2019.04.089
    Sarrafi R, Kovacevic R. Cathodic cleaning of oxides from aluminum surface by variable-polarity arc[J]. Welding Journal, 2010, 89(1): 1 − 10.
    Han Yongquan , Du Maohua, Yao Qinghu, et al. The Signal examination in variable polarity plasmaarc welding of aluminum alloy [C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation. Shanghai, China, 2011: 941-944.
    程林, 胡绳荪, 王志江. 变极性TIG焊电弧压力分析[J]. 焊接学报, 2012, 35(11): 101 − 104.

    Cheng Lin, Hu Shengsun, Wang Zhijiang. Arc pressure analysis in variable polarity TIG welding[J]. Transactions of the China Welding Institution, 2012, 35(11): 101 − 104.
    田银宝,申俊琦,胡绳荪,等. EP/EN模数对铝合金VP-CMT焊熔滴过渡及焊道成形的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1663 − 1668. doi: 10.3969/j.issn.1001-2303.2011.06.004

    Tian Yinbao, Shen Junqi, Hu Shengsun, et al. Effect of EP/EN balance on droplet transfer and weld formation of Al alloy by VP-CMT[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1663 − 1668. doi: 10.3969/j.issn.1001-2303.2011.06.004
    Yang Zhongyu, Zhu Zhiming, Liu Bo. Reverse voltage generating circuit for rapid commutation of output current polarity in variable polarity arc welding power supply[J]. IET Power Electronics, 2017, 10(12): 1609 − 1616. doi: 10.1049/iet-pel.2016.0748
    陈杰, 朱志明, 王琳化, 等. 新型变极性焊接电源二次逆变电路及其控制技术[J]. 焊接学报, 2009, 30(2): 30 − 33.

    Chen Jie, Zhu Zhiming, Wang, Linhua, et al. A novel secondary inverting circuit of the variable polarity welding power supply and its control technology[J]. Transactions of the China Welding Institution, 2009, 30(2): 30 − 33.
    丁坤, 姚河清, 范兴辉, 等. 变极性TIG焊电弧负载特性及换向控制策略[J]. 焊接学报, 2008, 29(9): 31 − 34. doi: 10.3321/j.issn:0253-360X.2008.09.009

    Ding Kun, Yao Heqing, Fan Xinghui, et al. Welding arc load characteristics of variable polarity TIG welding and its control strategy at commutation[J]. Transactions of the China Welding Institution, 2008, 29(9): 31 − 34. doi: 10.3321/j.issn:0253-360X.2008.09.009
    Cho J, Lee J J, Bae S H. Heat input analysis of variable polarity arc welding of aluminum[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(5-8): 1273 − 1280. doi: 10.1007/s00170-015-7292-y
    傅强. 低热输入变极性短路过渡GMAW焊接系统研究[D]. 南京: 南京航空航天大学, 2013.

    Fu Qiang. Research on low heat input variable polarity short-circuit transfer gas metal arc welding system [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
    杨中宇, 朱志明, 汤莹莹, 等. 稳压式变极性焊接电源二次逆变拓扑及控制策略[J]. 焊接学报, 2017, 38(9): 23 − 27. doi: 10.12073/j.hjxb.20151117001

    Yang Zhongyu, Zhu Zhiming, Tang Yingying, et al. Topology of secondary inverter and its control strategy of variable polarity welding power supply for generating stabilized reverse voltage[J]. Transactions of the China Welding Institution, 2017, 38(9): 23 − 27. doi: 10.12073/j.hjxb.20151117001
  • Related Articles

    [1]XIA Weisheng, GONG Fujian, YANG Rongguo, WAN Chaizhi, YANG Yunzhen. Apparent defect recognition of gas metal arc welding based on infrared vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 69-73. DOI: 10.12073/j.hjxb.20190928001
    [2]XU Min, XUE Jiaxiang, HUANG Wenjin. Research on low heat input pulsed MIG welding process for aluminum alloy sheet[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 110-114.
    [3]REN Fushen, YANG Shuai, LIU Jia, CHEN Shujun. Low heat input push-pull feeder CO2 welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 75-78.
    [4]ZHANG Tao, GUI Weihua, WANG Suiping. Direct model reference adaptive control of gas metal arc welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 25-27.
    [5]LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100.
    [6]ZHANG Fuju, WANG Yan, ZHANG Guodong, Wang Yutao. Ultra-fine grain steel welded joint behaiour of CO2 arc welding under low heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 77-80.
    [7]ZHANG Han-peng, HUANG Peng-fei, YIN Shu-yan, BAI Li-lai, ZHAO Yu-jiang. Control system for new low heat input digital welding power source[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (1): 89-92.
    [8]LU Zhen-yang, HUANG Peng-fei, ZHANG Han-peng, YIN Shu-yan. Pulsed gas metal arc welding of thin plate with high speed[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (2): 47-50.
    [9]YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40.
    [10]WANG fang, HOU Wen-kao, HU S Jack. Research on simulation systems of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 35-39.
  • Cited by

    Periodical cited type(2)

    1. 曹润平,韩永全,刘晓虎,洪海涛,韩蛟. 稀土铈对电弧及熔滴过渡行为的影响. 焊接学报. 2025(01): 95-102 . 本站查看
    2. 刘景武,张蕾,杜义,孙磊,王杏华,张晓,董星. 785 MPa及以上高强钢焊接材料的研发现状与展望. 精密成形工程. 2025(02): 62-75 .

    Other cited types(0)

Catalog

    Article views (316) PDF downloads (34) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return