Advanced Search
WANG fang, HOU Wen-kao, HU S Jack. Research on simulation systems of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 35-39.
Citation: WANG fang, HOU Wen-kao, HU S Jack. Research on simulation systems of MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 35-39.

Research on simulation systems of MIG welding

More Information
  • Received Date: November 18, 2002
  • Simulation of welding process is considered as a major driving force of the development of welding technology in the 21 stcentury.It makes predictions of the physical phenomena,joint geometry,welding distortion and microstructure so as to partially replace the time-consuming and costly experimentation in the development of new welding procedures and shorten the development period.In this paper,a simulation model is developed for the MIG welding process.Systematic and finite-difference-based numerical algorithms are desiged to simulate the thermal,electromagnetic and metal flows.The characteristics of welding power source,electric arc and wire feed device are also integrated into the system.It will provide a mathematical platform for the further study on welding physics,microstructure,mechanical properties and workpiece distortion.Analysis has been also conducted to study the metal transfer,weld pool oscillation and electric response.Some conclusions that are difficult to obtain by using experimental and analytical methods have been drawn.
  • Related Articles

    [1]GUAN Dashu, FANG Siyan, ZHOU Zhidan, CHEN Fuqiang, CHEN Mengmeng. Effect of temperature field on the thermal stress of arc spraying[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(8): 109-112. DOI: 10.12073/j.hjxb.2019400217
    [2]ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, JIN Guangri, GONG Feng. Numerical analysis of temperature field of narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 83-87.
    [3]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [4]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [5]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [6]HAN Guo-ming, LI Jian-qiang, YAN Qing-liang. Modeling and simulating of temperature field of laser welding for stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (3): 105-108.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]XU Wen-li, MENG Qing-gno, FANG Hong-yuan, XU Guang-yin. Temperature field of high strength aluminum ahoy sheets by twin wire welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (3): 11-14.
    [9]XUE Zhong ming, GU Lan, ZHANG Yan hua. Numerical simulation on temperature field in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 79-82.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.

Catalog

    Article views (256) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return