Advanced Search
ZHOU Chundong, ZHANG Xiaoyong, PENG Yong, WANG Kehong, WANG Jianchun, ZHOU Ming. Effect of CMT Cycle Step process parameters on weld surface characteristic texture and forming size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 95-101. DOI: 10.12073/j.hjxb.20220126001
Citation: ZHOU Chundong, ZHANG Xiaoyong, PENG Yong, WANG Kehong, WANG Jianchun, ZHOU Ming. Effect of CMT Cycle Step process parameters on weld surface characteristic texture and forming size[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 95-101. DOI: 10.12073/j.hjxb.20220126001

Effect of CMT Cycle Step process parameters on weld surface characteristic texture and forming size

More Information
  • Received Date: January 25, 2022
  • Available Online: December 14, 2022
  • The orthogonal test of plate surfacing was carried out by CMT Cycle Step welding process. The effects of the wire feeding speed, welding speed, CMT cycles, pause time interval on the fish-scal texture and forming size of weld surface were studied. The regression models of the process parameters on the step size (S) of fish-scale texture, weld width B and overlay thickness h were established. The results show that with the increase of the welding speed, CMT cycles, and pause time interval, the fish-scale step size (S) on the weld surface increases gradually. Properly reducing the welding speed and pause time interva can effectively reduce the height difference of weld surface Δh, and improve weld surface forming quality. With the increase of the wire feeding speed and CMT cycles, weld width B and overlay thickness h gradually increase; With the increase of the welding speed, weld width B and overlay thickness h gradually decrease. According to the theoretical analysis and regression analysis, the regression equations with high accuracy were obtained, which provided a theoretical basis for predicting the weld formation and optimizing the welding process parameters.
  • Chaitanya Gandhi, Nikhil Dixit, Omkar Aranke, et al. Characteriza- tion of AA7075 Weldment using CMT Process[J]. Materials Today:Proceedings, 2018, 5(11): 24024 − 24032. doi: 10.1016/j.matpr.2018.10.195
    Robert Talalaev, Renno Veinthal, Andres Laansoo. Cold metal transfer (CMT) welding of thin sheet metal products[J]. Estonian Journal of Engineering, 2012, 18(3): 243 − 250.
    Selvi S, Vishvaksenan A, Rajasekar E. Cold metal transfer (CMT) technology-An overview[J]. Defence Technology, 2018, 14(1): 28 − 44. doi: 10.1016/j.matpr.2019.07.331
    杜茂华, 韩永全, 樊伟杰, 等. 高强铝合金双脉冲VPPA焊缝成形机理[J]. 焊接学报, 2020, 41(2): 43 − 47. doi: 10.12073/j.hjxb.20190810002

    Du Maohua, Han Yongquan, Fan Weijie, et al. Mechanism of weld formation using double pulsed variable polarity plasma arc welding of high strength aluminum alloy[J]. Transactions of the China Welding Institution, 2020, 41(2): 43 − 47. doi: 10.12073/j.hjxb.20190810002
    A Rajesh Kannan, N. Siva Shanmugam, S Naveenkumar. Effect of Arc Length Correction on Weld Bead Geometry and Mechanical Properties of AISI 316L Weldments by Cold Metal Transfer (CMT) Process[J]. Materials Today:Proceedings, 2019, 18(7): 3916 − 3921.
    张栋, 陈茂爱, 武传松. 高速CMT焊送丝速度和焊接电流波形参数的优化[J]. 焊接学报, 2018, 39(1): 118 − 122. doi: 10.12073/j.hjxb.2018390027

    Zhang Dong, Chen Maoai, Wu Chuansong. Optimization of waveform parameters for high speed CMT welding of steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 118 − 122. doi: 10.12073/j.hjxb.2018390027
    刘志森, 薛丁琪, 韩绍华, 等. 基于CMT电弧增材的焊缝成形尺寸规律研究[J]. 精密成形工程, 2016, 8(6): 21 − 25. doi: 10.3969/j.issn.1674-6457.2016.06.004

    Liu Zhisen, Xue Dingqi, Han Shaohua, et al. Rules of Bead Forming Dimension of CMT-based Wire and Arc Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2016, 8(6): 21 − 25. doi: 10.3969/j.issn.1674-6457.2016.06.004
    Limeng Yin, Jinzhao Wang, Huiqin Hu, et al. Prediction of weld formation in 5083 aluminum alloy by twin-wire CMT welding based on deep learning[J]. Welding in the World, 2019, 63(4): 947 − 955. doi: 10.1007/s40194-019-00726-z
    李杰, 周鹏, 惠媛媛. 机器人MAG焊工艺参数对焊缝成形的影响[J]. 电焊机, 2019, 49(12): 91 − 94.

    Li Jie, Zhou Peng, Hui Yuanyuan. Effects of robot MAG welding parameters on appearance of weld[J]. Electric Welding Machine, 2019, 49(12): 91 − 94.
    Meng X, Qin G, Zhang Y, et al. High speed TIG – MAG hybrid arc welding of mild steel plate[J]. Journal of Materials Processing Technology, 2014, 214(11): 2417 − 2424. doi: 10.1016/j.jmatprotec.2014.05.020
    张川, 张福隆, 李跃峰, 等. 50CrV钢激光填丝焊焊缝成形多元非线性回归模型[J]. 兵工学报, 2018, 39(11): 2256 − 2266. doi: 10.3969/j.issn.1000-1093.2018.11.021

    Zhang Chuan, Zhang Fulong, Li Yuefeng, et al. Multivariate Nonlinear Regression Analysis Model of Weld Bead Shaping of 50CrV Steel by Laser Welding with Filler Wire[J]. Acta Armamentarii, 2018, 39(11): 2256 − 2266. doi: 10.3969/j.issn.1000-1093.2018.11.021
    罗怡, 李春天, 周银. 非等厚异种钢电阻点焊熔核成形的多元非线性回归模型[J]. 焊接学报, 2010, 31(11): 85 − 88.

    Luo Yi, Li Chuntian, Zhou Yin. Nonlinear multiple regression modeling of nugget formation for dissimilar steel welding with unequal thickness[J]. Transactions of the China Welding Institution, 2010, 31(11): 85 − 88.
  • Related Articles

    [1]WANG Jiajie, JIAO Yong, YU Jiuhao, WANG Guoxing, XU Jianping. Numerical simulations of temperature field and keyhole evolution for electron beam welding pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(6): 87-90.
    [2]XIE Weifeng, LEI Yucheng, ZHU Qiang, XIA Xiaoping. Investigation in resonance frequency of keyhole plasma ultrasound-arc welding based on FEM simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (10): 21-24.
    [3]ZHANG Tao, WU Chuansong. Numerical simulation of temperature field and fluid flow in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (7): 87-90.
    [4]WANG Renping, LEI Yongping, SHI Yaowu. Numerical simulation of keyhole formation process in laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 38-40.
    [5]KONG Ji-lan, ZHANG Peng-cheng, ZHOU Shang-qi, ZOU Jue-sheng. The Computer Simulation of Concentration Field for Be/HR-1 Stainless Steel on HIP[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 11-14.
    [6]LI Huan, HU Lian-hai, LI Jun-yue, YANG Li-jun. Computer Simulation and Experimental Research on CO2 Short-cir.cuit Transfer Welding Under Waveform Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 1-4.
    [7]YANG Qing-xiang, LI Yan-li, ZHAO Yan-hui, YAO Mei. Computer Simulation of Residual Stress Field of Hardfacing Metal and Effect of Specimen Dimension[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 44-46.
    [8]Zhang Hua, Pan Jiluan. 3D Simulation of Computer for Weld Temperature Field Based on 2D Measurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 225-232.
    [9]Zhang Chudong. Computer simulation of transient microstructure prediction of welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (2): 121-126.
    [10]Yang Zhiyuan, Jiang Lipei, Wang Fuchun, Xuan Shunji. Computer simulation analysis of SCR arc welding rectifier circuits[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1992, (1): 51-58.

Catalog

    Article views (500) PDF downloads (98) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return