Citation: | LI Congwei, SHAO Changlei, ZHU Jialei, CAI Zhihai, MEI Le, JIAO Xiangdong. Microstructure and properties of 304 stainless steel coating by local dry underwater laser cladding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 67-74. DOI: 10.12073/j.hjxb.20210305004 |
焦向东, 朱加雷. 海洋工程水下焊接自动化技术应用现状及展望[J]. 金属加工(热加工), 2013(2): 24 − 26.
Jiao Xiangdong, Zhu Jialei. Application status and prospect of underwater welding automation technology in offshore engineering[J]. MW Metal Forming, 2013(2): 24 − 26.
|
Takehisa H, Masataka T, Yoshimi T, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor componentsl[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51
|
冯健, 侯国亭, 刘献甫, 等. 核电设备用SA533GrBCL2-304L金属复合板爆炸焊接工艺试验研究[J]. 压力容器, 2019, 36(11): 18.
Feng Jian, Hou Guoting, Liu Xianfu, et al. Experimental research on explosive welding process of SA533GrBCL2-304L clad metal plate for nuclear power equipment[J]. Pressure Vessel Technology, 2019, 36(11): 18.
|
曾群锋, 许雅婷, 林乃明. 304不锈钢在人工海水环境中的腐蚀磨损行为研究[J]. 表面技术, 2020, 49(1): 194 − 202.
Zeng Qunfeng, Xu Yating, Lin Naiming. Corrosion and wear behavior of 304 stainless steel in artificial seawater[J]. Surface Technology, 2020, 49(1): 194 − 202.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. In-situ formation of laser-cladded layer on Ti-6Al-4V titanium alloy in underwater environment[J]. Optics and Laser Technology, 2020, 131: 1 − 10. doi: 10.1016/j.optlaseng.2020.106104
|
Feng Xiangru, Cui Xiufang, Zheng Wei, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics and Laser Technology, 2019, 114: 140 − 145. doi: 10.1016/j.optlastec.2019.01.034
|
Wen Xin, Jin Guo, Cui Xiufang, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics and Laser Technology, 2020, 111: 814 − 824.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Technology, 2021, 289: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116949
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Underwater laser welding for 304 stainless steel with filler wire[J]. Journal of Materials Research and Technology, 2020, 9(6): 15648 − 15661. doi: 10.1016/j.jmrt.2020.11.029
|
Fu Yunlong, Guo Ning, Wang Guanghui, et al. Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution[J]. Materials and Design, 2021, 197: 1 − 10. doi: 10.1016/j.matdes.2020.109196
|
Van T L, Dinh S M. Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing[J]. Materials Letters, 2020, 271: 1 − 10. doi: 10.1016/j.matlet.2020.127791
|
Li Kaibin, Li Dong, Liu Dongyu, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340: 143 − 150. doi: 10.1016/j.apsusc.2015.02.171
|
Song Lijun, Zeng Guangcheng, Xiao Hui, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24: 116 − 124. doi: 10.1016/j.jmapro.2016.08.004
|
Song Jianli, Deng Qilin, Chen Changyuan, et al. Rebuilding of metal components with laser cladding forming[J]. Applied Surface Science, 2006, 252(22): 7934 − 7940. doi: 10.1016/j.apsusc.2005.10.025
|
Wen Jiahao, Zhang Linjie, Ning Jie, et al. Laser additively manufactured intensive dual-phase steels and their microstructures, properties and corrosion resistance[J]. Materials and Design, 2020, 192: 1 − 10. doi: 10.1016/j.matdes.2020.108710
|
[1] | CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001 |
[2] | HU Qingsong, YAN Zhaoyang, ZHANG Pengtian, CHEN Shujun. Arc behavior and droplet transfer in self-adaptive shunt alternating arc WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 41-46. DOI: 10.12073/j.hjxb.20230309003 |
[3] | YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001 |
[4] | ZHOU Xiaochen1, LI Huan1, SONG Chunguang2, ZHANG Yuchang3. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 45-48. DOI: 10.12073/j.hjxb.20150609001 |
[5] | ZHU Xiaoyang, LI Huan, HUANG Chaoqun, YANG Ke, NI Yanbing, WANG Guodong. Analysis of droplet transfer and weld appearance in pulsed wire feeding MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 59-63. |
[6] | XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72. |
[7] | LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100. |
[8] | LIU Gang, FENG Yun, LI Jun-yue, FAN Rong-huan. Arc spectrum signals of droplet spray transfer in MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 40-44. |
[9] | YANG Yun-qiang, ZHANG Xiao-qi, LI Jun-yue, LI Huan. Selection of droplet transfer specific spectrum window[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 14-18. |
[10] | YANG Yun-qiang, LI Jun-yue, HU Sheng-gang, LIU Gang, LI Huan. The Characteristic Spectral Information of Droplet Transfer in Pulsed MIG Welding and It's Applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 36-38. |