Citation: | LI Congwei, SHAO Changlei, ZHU Jialei, CAI Zhihai, MEI Le, JIAO Xiangdong. Microstructure and properties of 304 stainless steel coating by local dry underwater laser cladding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(8): 67-74. DOI: 10.12073/j.hjxb.20210305004 |
焦向东, 朱加雷. 海洋工程水下焊接自动化技术应用现状及展望[J]. 金属加工(热加工), 2013(2): 24 − 26.
Jiao Xiangdong, Zhu Jialei. Application status and prospect of underwater welding automation technology in offshore engineering[J]. MW Metal Forming, 2013(2): 24 − 26.
|
Takehisa H, Masataka T, Yoshimi T, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor componentsl[J]. Journal of Power and Energy Systems, 2009, 3(1): 51 − 59. doi: 10.1299/jpes.3.51
|
冯健, 侯国亭, 刘献甫, 等. 核电设备用SA533GrBCL2-304L金属复合板爆炸焊接工艺试验研究[J]. 压力容器, 2019, 36(11): 18.
Feng Jian, Hou Guoting, Liu Xianfu, et al. Experimental research on explosive welding process of SA533GrBCL2-304L clad metal plate for nuclear power equipment[J]. Pressure Vessel Technology, 2019, 36(11): 18.
|
曾群锋, 许雅婷, 林乃明. 304不锈钢在人工海水环境中的腐蚀磨损行为研究[J]. 表面技术, 2020, 49(1): 194 − 202.
Zeng Qunfeng, Xu Yating, Lin Naiming. Corrosion and wear behavior of 304 stainless steel in artificial seawater[J]. Surface Technology, 2020, 49(1): 194 − 202.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. In-situ formation of laser-cladded layer on Ti-6Al-4V titanium alloy in underwater environment[J]. Optics and Laser Technology, 2020, 131: 1 − 10. doi: 10.1016/j.optlaseng.2020.106104
|
Feng Xiangru, Cui Xiufang, Zheng Wei, et al. Effect of the protective materials and water on the repairing quality of nickel aluminum bronze during underwater wet laser repairing[J]. Optics and Laser Technology, 2019, 114: 140 − 145. doi: 10.1016/j.optlastec.2019.01.034
|
Wen Xin, Jin Guo, Cui Xiufang, et al. Underwater wet laser cladding on 316L stainless steel: A protective material assisted method[J]. Optics and Laser Technology, 2020, 111: 814 − 824.
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment[J]. Journal of Materials Processing Technology, 2021, 289: 1 − 10. doi: 10.1016/j.jmatprotec.2020.116949
|
Fu Yunlong, Guo Ning, Cheng Qi, et al. Underwater laser welding for 304 stainless steel with filler wire[J]. Journal of Materials Research and Technology, 2020, 9(6): 15648 − 15661. doi: 10.1016/j.jmrt.2020.11.029
|
Fu Yunlong, Guo Ning, Wang Guanghui, et al. Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution[J]. Materials and Design, 2021, 197: 1 − 10. doi: 10.1016/j.matdes.2020.109196
|
Van T L, Dinh S M. Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing[J]. Materials Letters, 2020, 271: 1 − 10. doi: 10.1016/j.matlet.2020.127791
|
Li Kaibin, Li Dong, Liu Dongyu, et al. Microstructure evolution and mechanical properties of multiple-layer laser cladding coating of 308L stainless steel[J]. Applied Surface Science, 2015, 340: 143 − 150. doi: 10.1016/j.apsusc.2015.02.171
|
Song Lijun, Zeng Guangcheng, Xiao Hui, et al. Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders[J]. Journal of Manufacturing Processes, 2016, 24: 116 − 124. doi: 10.1016/j.jmapro.2016.08.004
|
Song Jianli, Deng Qilin, Chen Changyuan, et al. Rebuilding of metal components with laser cladding forming[J]. Applied Surface Science, 2006, 252(22): 7934 − 7940. doi: 10.1016/j.apsusc.2005.10.025
|
Wen Jiahao, Zhang Linjie, Ning Jie, et al. Laser additively manufactured intensive dual-phase steels and their microstructures, properties and corrosion resistance[J]. Materials and Design, 2020, 192: 1 − 10. doi: 10.1016/j.matdes.2020.108710
|
[1] | FENG Yulan, WU Zhisheng, SUN Zhiyu. Numerical simulation of the influence of thickness of cladding material on stress and strain of welded joint of stainless steel composite plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 73-82. DOI: 10.12073/j.hjxb.20230606001 |
[2] | JIANG Shuying, CAI Chang, ZHAO Ming, HUANG Wanqun. Microstructure and properties of Q235 steel/6061 aluminum alloy resistance spot welding joint based on high-entropy alloy interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(7): 71-78. DOI: 10.12073/j.hjxb.20220826002 |
[3] | GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005 |
[4] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[5] | HUANG Bensheng, CHEN Quan, YANG Jiang, LIU Ge, YI Hongyu. Numerical simulation of welding residual stress and distortion in Q345/316L dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 138-144. DOI: 10.12073/j.hjxb.2019400057 |
[6] | WANG Houqin, ZHANG Binggang, WANG Ting, FENG Jicai. Numerical simulation of molten pool flow behavior in stationary electron beam welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 57-61. |
[7] | SUN Fangfang, LI Mengsheng, WANG Yang, ZHAO Ying. Numerical simulation on 201 stainless steel spot welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 21-24. |
[8] | WANG Jianmin, ZHU Xi, LIU Runquan. Three dimensional numerical simulation for explosive welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 109-112. |
[9] | Liu Renpei, Dong Zujue, Wei Yanhong. Numerical Simulation Model of Stress-strain Distributions for Weld Metal Solidification Cracking in Stainless Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (4): 238-243. |
[10] | Wei Yanhong, Liu Renpei, Dong Zujue. Numerical Simulation of Temperature Fields for Weld Metal Solidification Cracking in Stainless Steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (3): 199-204. |
1. |
侯东旭,殷子强,陈培敦,夏佃秀,王守仁. 不同活化剂对超薄板脉冲激光焊焊接接头组织及性能的影响. 电焊机. 2025(03): 48-57 .
![]() | |
2. |
郭广飞,任明皓,姜恒,吴锴,汪志福,章小浒. 热输入对低温高锰钢焊接接头组织和性能的影响. 机械工程材料. 2025(03): 94-99 .
![]() | |
3. |
邬亲丹,林毅,官忠波,杨飞,朱宇霆. 回火对E101T1-K3C熔敷金属显微组织和力学性能的影响. 机械制造文摘(焊接分册). 2024(01): 1-5+11 .
![]() | |
4. |
曾道平,郑韶先,安同邦,代海洋,马成勇. 440 MPa级高强钢焊条熔敷金属组织与低温冲击韧性研究. 焊接学报. 2024(03): 120-128+136 .
![]() | |
5. |
代海洋,贺建芸,付俊杰,杜立强,魏靖柠,左月,安同邦. 热输入对440 MPa级HSLA钢埋弧焊对接接头组织及性能的影响. 电焊机. 2024(05): 52-59 .
![]() | |
6. |
汤忖江,安同邦,彭云,林纯丞,马成勇,刘旭明. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响. 焊接学报. 2024(09): 110-119 .
![]() |