Advanced Search
ZOU Zongxuan, LIU Zhengjun, HAN Xu. Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 91-96. DOI: 10.12073/j.hjxb.20210208001
Citation: ZOU Zongxuan, LIU Zhengjun, HAN Xu. Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 91-96. DOI: 10.12073/j.hjxb.20210208001

Effect of W on microstructure and properties of Fe-Cr-C-W-B surfacing alloy

More Information
  • Received Date: February 07, 2021
  • Available Online: August 30, 2021
  • The service life of mechanical equipment will be reduced due to wear, so the wear resistance of materials should be improved to increase the service time of mechanical equipment. Fe-Cr-C-W-B surfacing alloy was prepared by open arc surfacing with he submerged arc welding machine. The changes of hard phase quantity and wear resistance of surfacing alloy after changing the mass proportion of W in flux-cored wire were analyzed under certain test conditions. The results show that when the W content increases, the proportion of the hard phase in the surfacing layer increases, thereby significantly improving its hardness and wear resistance. When the mass fraction of metal W in the surfacing layer is 2.73%, the surfacing layer mainly contains tungsten hard phases of FeWB, Fe2W, FeW3C. When W content of the surfacing layer is 5.47%, the wear resistance of the surfacing layer reaches the best, the wear amount is 0.382 5 g, and the hardness is 61.63 HRC. When W content of the surfacing layer is 6.35%, the hardness of the surfacing layer reaches the highest 64.22 HRC, the wear extent is 0.418 2 g. As the hardenability of the surfacing layer increases, the hard phase is easy to fall off during the wear process, so the wear resistance decreases slightly. In order to obtain better wear resistance, the W mass fraction should be controlled at about 5.47% .
  • Tian H, Wang C, Guo M, et al. Study of the frictional-wear performance and abrasion resistance mechanism of a high-speed arc-sprayed FeNiCrAl coating[J]. Surface and Coatings Technology, 2019, 370: 320 − 330. doi: 10.1016/j.surfcoat.2019.04.092
    Yuan Xiao, Wang Jing, Zhu Qinghai, et al. Microstructure and wear resistance of Fe-based and Co-based coating of AISI H13[J]. China Welding, 2019, 28(3): 57 − 63.
    魏炜, 黄智泉, 张海燕, 等. 钒对铁基碳化钨耐磨堆焊层组织和性能的影响[J]. 焊接学报, 2019, 40(6): 131 − 136. doi: 10.12073/j.hjxb.2019400167

    Wei Wei, Huang Zhiquan, Zhang Haiyan, et al. Effect of vanadium on Microstructure and properties of Fe based WC hardfacing layer[J]. Transactions of the China Welding Institution, 2019, 40(6): 131 − 136. doi: 10.12073/j.hjxb.2019400167
    Li Peng. Microstructures and surface performance of laser melting deposited composites on a Ti alloy[J]. Science and Engineering of Composite Materials, 2014, 21(2): 159 − 163. doi: 10.1515/secm-2013-0066
    Li Dongrui, Liu Zhengjun, Su Yunhai. Effect of TiN on microstructure and wear resistance of Fe-Cr-C hardfacing alloy: experimental research and first-principles calculation[J]. Materials Research Express, 2018, 8(5): 338 − 342.
    Colao F H G, Maranho O. Evaluation of mass loss of weld-deposited hardfacing with cored wire Ti-FeCrC alloy[J]. Soldagem & Inspecao, 2014, 19(10): 58 − 68.
    Wang W, Ferree S. New wire an advancement in self-shielded flux-cored arc welding[J]. Welding Journal, 2011, 90(7): 26 − 27.
    Katherasan D, Srivastava S, Sathiya P. Process parameter optimization of AISI 316L(N) weld joints produced using flux-cored arc welding process[J]. Transactions of the Indian Institute of Metals, 2013, 66(2): 152 − 157.
    刘政军, 勾健, 贾华, 等. Fe-Cr-C-B-Nb堆焊合金的显微组织和耐磨性[J]. 焊接学报, 2018, 39(3): 78 − 81.

    Liu Zhengjun, Gou Jian, Jia Hua, et al. Microstructure and wear resistance of Fe-Cr-C-B-Nb Hardfacing alloy[J]. Transactions of the China Welding Institution, 2018, 39(3): 78 − 81.
    Lad V I, Menghani J V, Channiwala S A. Studies on the effect of alloying element in iron base hardfacing alloy[J]. Transactions of the Indian Institute of Metals, 2014, 67(3): 343 − 349. doi: 10.1007/s12666-013-0352-9
    Prijanovi M T, Kosec L. Heat affected zone in surfacing chromium ledeburitic steel[J]. Metalurgija, 2010, 49(3): 155 − 160.
    Gou Junfeng, Wang You, Sun Jinping, et al. Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles[J]. Surface & Coatings Technology, 2017, 3(11): 113 − 126.
    Yang Q, Xing X, Gao Y, et al. Low-stress abrasion behaviors of Fe-Cr-C (1.4 similar to 5.6 wt-%) hardsurface coatings[J]. Welding Journal, 2016, 8(2): 39 − 45.
    Hülya Durmuş, Nilay Çömez, Canser Gül, et al. Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test[J]. International Journal of Refractory Metals and Hard Materials, 2018, 77: 37 − 43. doi: 10.1016/j.ijrmhm.2018.07.006
    旺虎. 耐磨堆焊用自保护药芯焊丝渣系研究[D]. 南京: 南京航空航天大学, 2010.

    Wang Hu. Study on slag system of self shielded flux cored wire for hardfacing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
    史冠勇, 张廷安, 牛丽萍, 等. Al2O3和Cr2O3对自蔓延冶金法制备CuCr合金冶炼渣性能的影响[J]. 有色金属科学与工程, 2019, 10(1): 8 − 12.

    Shi Guanyong, Zhang Tingan, Niu Liping, et al. Effect of Al2O3 and Cr2O3 on properties of CuCr alloy slag prepared by SHS method[J]. Science and Engineering of Nonferrous Metals, 2019, 10(1): 8 − 12.
    Suetin D V, Shein I R, Ivanovskii A L. Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations[J]. Physica B-Condensed Matter, 2009, 404(20): 3544 − 3549. doi: 10.1016/j.physb.2009.05.051
  • Related Articles

    [1]YANG Yule, DAI Yanfeng, GUO Meng, YANG Chao, PENG Weikang. Microstructure and mechanical properties of ultra-high strength AerMet 100 Steel formed by laser metal deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(3): 137-144. DOI: 10.12073/j.hjxb.20231219002
    [2]XIE Yujiang, YANG Yule, CHI Changtai. Microstructures and mechanical properties of laser metal deposited 24CrNiMo steel in different atmospheres[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 19-24. DOI: 10.12073/j.hjxb.20190905001
    [3]WANG Bo, LIU Han, XUE Songbai, LI Yang, LOU Jiyuan, LOU Yinbin. Effect of rare earth Ce on microstructure and properties of Zn-22Al filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 61-64.
    [4]ZHANG Man, WANG Pengfei, ZHANG Lincai, LIN Yuebin. Microstructure and mechanical properties of Cu/Al joint brazed with Zn-Al-Ag filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 55-58.
    [5]SHEN Zhikang, YANG Xinqi, ZHANG Zhaohua, YIN Yuhuan. Analysis of microstructure and mechanical properties of refill friction stir spot welded aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 73-76.
    [6]ZHANG Shuai, XUE Songbai, YANG Jinlong, LOU Jiang, WANG Shuiqing. Effect of P element on microstructure and properties of Al-Si-Zn filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 103-107.
    [7]YANG Changyong, XU Jiuhua, DING Wenfeng, FU Yucan, CHEN Zhenzhen. Microstructure and mechanical property of Ag-Cu-Ti fillers added with rare earth lanthanum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (1): 67-70,74.
    [8]ZHANG Weihua, QIU Xiaoming, CHEN Xiaowei, ZHAO Xihua, SUN Daqian, LI Yongqiang. Microstructure and mechanical property of transient liquid phase bonded aluminum silicon alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 121-124.
    [9]HAN Xianpeng, XUE Songbai, Gu Liyong, GU Wenhua, ZHANG Xin. Effect of gallium on microstructure and mechanical properties of Ag-Cu-Zn filler metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 45-48.
    [10]SHI Yiping, XUE Songbai, WANG Jianxin, GU Liyong, GU Wenhua. Effects of Ce on spreadability of Sn-Cu-Ni lead-free solder and mechanical properties of soldered joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 73-77.
  • Cited by

    Periodical cited type(3)

    1. 余丁坤,薛鹏,陈融,黄世盛,王萍,唐卫岗. 低银BAg10CuZnSnInNd钎料组织与性能. 焊接学报. 2023(04): 93-97+134-135 . 本站查看
    2. 彭宇涛,李佳航,李子坚,俞强,沈炳建,王晓飞,王晓蓉,沈杭燕,刘薇. 低银无镉Ag-Cu-Zn钎料的合金化改性. 材料热处理学报. 2020(02): 166-172 .
    3. 曹秀斌,郭亚静,钱敏科,王俭辛. Pr对Ag30CuZnSn接头强度的影响及断口分析. 江苏科技大学学报(自然科学版). 2020(06): 23-25+100 .

    Other cited types(7)

Catalog

    Article views (418) PDF downloads (34) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return