Citation: | LIU Xichang, LI Wenya, GAO Yanjun, WEN Quan. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002 |
Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction welding: EP19940120385[P]. 1995-07-05.
|
Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding: US5460317[P]. 1995-10-24.
|
周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
Zhou Li, Liu Chaolei, Wang Ji, et al. Research progress in self-reacting friction stir welding technology[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
|
Zhao S, Bi Q Z, Wang Y H, et al. Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 1105 − 1118. doi: 10.1007/s00170-016-9450-2
|
Li Gaohui, Zhou Li, Zhang Haifeng, et al. Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding[J/OL]. Chinese Journal of Aeronautics, 2020. https://doi.org/ 10.1016/j.cja.2020.05.037.
|
Li W Y, Fu T, Huetsch L, et al. Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Materials & Design, 2014, 64(12): 714 − 720.
|
Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia, 2015, 102: 95 − 98. doi: 10.1016/j.scriptamat.2015.02.022
|
Xu W F, Liu H J, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys and Compounds, 2011, 509(33): 8449 − 8454. doi: 10.1016/j.jallcom.2011.05.118
|
龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
|
胡晓晴. 基于示踪材料的双轴肩搅拌摩擦焊流场研究[D]. 镇江: 江苏科技大学, 2015.
Hu Xiaoqing. Research on the flow field of bobbin tool friction stir welding based on tracer material[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
|
Hilgert J, Dos Santos J F, Huber N. Shear layer modelling for bobbin tool friction stir welding[J]. Science and Technology of Welding & Joining, 2010, 17(6): 454 − 459.
|
李继忠, 赵华夏, 栾国红. 铝合金搅拌摩擦焊物理场三维数值模拟[J]. 焊接学报, 2016, 37(5): 15 − 18.
Li Jizhong, Zhao Huaxia, Luan Guohong. 3D numerical simulation of physical fields of friction stir welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(5): 15 − 18.
|
Singh P, Biswas P, Kore S D. A three-dimensional fully coupled thermo- mechanical model for self-reacting friction stir welding of aluminium AA6061 sheets[J]. Journal of Physics Conference Series, 2016, 759(1): 1 − 6.
|
王非凡. Al-Li合金双轴肩搅拌摩擦焊成形机制及性能研究[D]. 西安: 西北工业大学, 2016.
Wang Feifan. Investigation on joint formation mechanism and mechanical properties of bobbin tool friction stir welding of Al-Li alloys[D]. Xi’an: Northwestern Polytechnical University, 2016.
|
Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2679 − 2687. doi: 10.1007/s00170-018-2750-y
|
陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
|
Bastier A, Maitournam M H, Van K D. Steady state thermalmechnical modelling of friction stir welding[J]. Scinece and Technology of Welding & Joining, 2006, 11(3): 278 − 288.
|
武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294
Wu Chuansong, Su Hao, Shi Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294
|
Cao J Y, Wang M, Kong L, et al. Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 89: 2129 − 2139.
|
徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66.
Xu Weifeng, Liu Hejin, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.
|
张子群. 铝合金2219弧板件铣削力建模及其对残余应力的影响规律研究[D]. 济南: 山东大学, 2018.
Zhang Ziqun. Milling force modeling of alloy 2219 arc plates and its influence on residual stress[D]. Jinan: Shandong University, 2018.
|
Tutunchilar S, Haghpanahi M, Besharati Givi M K, et al. Simulation of material flow in friction stir processing of a cast Al-Si alloy[J]. Materials & Design, 2012, 40: 415-426.
|
Wang H, Colegrove P A, Dos Santos J F. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy[J]. Computational Materials Science. 2013, 71: 101-108.
|
朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299.
Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.
|
Zhang H J, Wang M, Zhang X, et al. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy[J]. Materials & Design, 2015, 65: 559 − 566.
|
Esmaily M, Mortazavi N, Osikowicz W, et al. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles[J]. Materials & Design, 2016, 108: 114 − 125.
|
Zhou L, Li G H, Liu C L, et al. Microstructural characteristics and mechanical properties of Al-Mg-Si alloy self-reacting friction stir welded joints[J]. Science and Technology of Welding and Joining, 2017, 22(5): 438 − 445. doi: 10.1080/13621718.2016.1251733
|
[1] | HAN Mei, ZHANG Xi, MA Qingjun, WEI Yushun, WEI Chen, WANG Zejun, JIA Yunhai. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 47-53. DOI: 10.12073/j.hjxb.20230301001 |
[2] | CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003 |
[3] | SU Xiaohu, LI Zhuoxin, LI Hong, JinKim Hee, MENG Bo. Microstructure to properties of coarse grained heat affected zone in deposited weld metal of metal cored wire E120C-K4[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 48-53. DOI: 10.12073/j.hjxb.2019400262 |
[4] | ZHANG Lei, LIU Changqing, YU Jingwei, HU Xihai, GONG Feng, JIN Guangri. Numerical analysis of microstructure evolution of coarse grained zone in sidewall during narrow gap submerged arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 103-106. |
[5] | HU Meijuan, WANG Peng, HAN Xinli, JI Lingkang. Microstructure and properties of coarse grain region for high-strain pipeline X80 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 93-96. |
[6] | CHAI Feng, SU Hang, YANG Caifu, LUO Xiaobing. Coarse grained region microstructure and properties of high heat input welding DH36 steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (12): 25-28. |
[7] | ZHANG Yingqiao, ZHANG Hanqian, LIU Weiming. Effects of M-A constituent on toughness of coarse grain heat-affected zone in HSLA steels for oil tanks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 109-112. |
[8] | WU Wei, GAO Hongming, WU Lin. Microstructures in CGHAZ and mechanical properties of welded joint during welding of fine grain titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (1): 61-64. |
[9] | CHAI Feng, YANG Cai-fu, ZHANG Yong-quan, SU Hang, XU Zhou. Coarse-grained heat affected zone microstructure and toughness of copper-bearing age-hardening steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 56-60. |
[10] | Wu Zhantian, Guo Jiuzhu, Zhou Zhenhua, Zhu Hong, Wang Xiaoyu. Structure and property of coarse-grained zone in weld of a high strength low alloy 20Mn2WNbB steel studied by thermal simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1995, (1): 40-44. |
1. |
马晓锋,夏攀,刘海生,史铁林,王中任. 全位置焊接熔池的深度学习检测方法. 机械工程学报. 2023(12): 272-283 .
![]() |