Citation: | LIU Xichang, LI Wenya, GAO Yanjun, WEN Quan. Material flow behavior during bobbin-tool friction stir welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 48-56. DOI: 10.12073/j.hjxb.20201228002 |
Thomas W M, Nicholas E D, Needham J C, et al. Improvements relating to friction welding: EP19940120385[P]. 1995-07-05.
|
Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding: US5460317[P]. 1995-10-24.
|
周利, 刘朝磊, 王计, 等. 双轴肩搅拌摩擦焊技术研究现状[J]. 焊接, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
Zhou Li, Liu Chaolei, Wang Ji, et al. Research progress in self-reacting friction stir welding technology[J]. Welding & Joining, 2015(6): 14 − 18. doi: 10.3969/j.issn.1001-1382.2015.06.006
|
Zhao S, Bi Q Z, Wang Y H, et al. Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 90: 1105 − 1118. doi: 10.1007/s00170-016-9450-2
|
Li Gaohui, Zhou Li, Zhang Haifeng, et al. Effects of traverse speed on weld formation, microstructure and mechanical properties of ZK60 Mg alloy joint by bobbin tool friction stir welding[J/OL]. Chinese Journal of Aeronautics, 2020. https://doi.org/ 10.1016/j.cja.2020.05.037.
|
Li W Y, Fu T, Huetsch L, et al. Effects of tool rotational and welding speed on microstructure and mechanical properties of bobbin-tool friction-stir welded Mg AZ31[J]. Materials & Design, 2014, 64(12): 714 − 720.
|
Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding[J]. Scripta Materialia, 2015, 102: 95 − 98. doi: 10.1016/j.scriptamat.2015.02.022
|
Xu W F, Liu H J, Chen D L. Material flow and core/multi-shell structures in a friction stir welded aluminum alloy with embedded copper markers[J]. Journal of Alloys and Compounds, 2011, 509(33): 8449 − 8454. doi: 10.1016/j.jallcom.2011.05.118
|
龙玲, 史清宇, 刘铁, 等. 搅拌摩擦焊接材料流动模型及在缺陷预测中的应用[J]. 焊接学报, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
Long Ling, Shi Qingyu, Liu Tie, et al. Modeling of material flow during friction stir welding and the application for defect prediction[J]. Transactions of the China Welding Institution, 2019, 40(1): 84 − 88. doi: 10.12073/j.hjxb.2019400017
|
胡晓晴. 基于示踪材料的双轴肩搅拌摩擦焊流场研究[D]. 镇江: 江苏科技大学, 2015.
Hu Xiaoqing. Research on the flow field of bobbin tool friction stir welding based on tracer material[D]. Zhenjiang: Jiangsu University of Science and Technology, 2015.
|
Hilgert J, Dos Santos J F, Huber N. Shear layer modelling for bobbin tool friction stir welding[J]. Science and Technology of Welding & Joining, 2010, 17(6): 454 − 459.
|
李继忠, 赵华夏, 栾国红. 铝合金搅拌摩擦焊物理场三维数值模拟[J]. 焊接学报, 2016, 37(5): 15 − 18.
Li Jizhong, Zhao Huaxia, Luan Guohong. 3D numerical simulation of physical fields of friction stir welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(5): 15 − 18.
|
Singh P, Biswas P, Kore S D. A three-dimensional fully coupled thermo- mechanical model for self-reacting friction stir welding of aluminium AA6061 sheets[J]. Journal of Physics Conference Series, 2016, 759(1): 1 − 6.
|
王非凡. Al-Li合金双轴肩搅拌摩擦焊成形机制及性能研究[D]. 西安: 西北工业大学, 2016.
Wang Feifan. Investigation on joint formation mechanism and mechanical properties of bobbin tool friction stir welding of Al-Li alloys[D]. Xi’an: Northwestern Polytechnical University, 2016.
|
Wen Q, Li W Y, Gao Y J, et al. Numerical simulation and experimental investigation of band patterns in bobbin tool friction stir welding of aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2679 − 2687. doi: 10.1007/s00170-018-2750-y
|
陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
Chen Gaoqiang, Shi Qingyu. Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. Journal of Mechanical Engineering, 2015, 51(22): 11 − 21. doi: 10.3901/JME.2015.22.011
|
Bastier A, Maitournam M H, Van K D. Steady state thermalmechnical modelling of friction stir welding[J]. Scinece and Technology of Welding & Joining, 2006, 11(3): 278 − 288.
|
武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294
Wu Chuansong, Su Hao, Shi Lei. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding[J]. Acta Metallurgica Sinica, 2018, 54(2): 265 − 277. doi: 10.11900/0412.1961.2017.00294
|
Cao J Y, Wang M, Kong L, et al. Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 89: 2129 − 2139.
|
徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟[J]. 焊接学报, 2010, 31(2): 63 − 66.
Xu Weifeng, Liu Hejin, Zhu Hongqiang. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate[J]. Transactions of the China Welding Institution, 2010, 31(2): 63 − 66.
|
张子群. 铝合金2219弧板件铣削力建模及其对残余应力的影响规律研究[D]. 济南: 山东大学, 2018.
Zhang Ziqun. Milling force modeling of alloy 2219 arc plates and its influence on residual stress[D]. Jinan: Shandong University, 2018.
|
Tutunchilar S, Haghpanahi M, Besharati Givi M K, et al. Simulation of material flow in friction stir processing of a cast Al-Si alloy[J]. Materials & Design, 2012, 40: 415-426.
|
Wang H, Colegrove P A, Dos Santos J F. Numerical investigation of the tool contact condition during friction stir welding of aerospace aluminium alloy[J]. Computational Materials Science. 2013, 71: 101-108.
|
朱智, 王敏, 张会杰, 等. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299.
Zhu Zhi, Wang Min, Zhang Huijie, et al. Simulation on material flow and defect during friction stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.
|
Zhang H J, Wang M, Zhang X, et al. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy[J]. Materials & Design, 2015, 65: 559 − 566.
|
Esmaily M, Mortazavi N, Osikowicz W, et al. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles[J]. Materials & Design, 2016, 108: 114 − 125.
|
Zhou L, Li G H, Liu C L, et al. Microstructural characteristics and mechanical properties of Al-Mg-Si alloy self-reacting friction stir welded joints[J]. Science and Technology of Welding and Joining, 2017, 22(5): 438 − 445. doi: 10.1080/13621718.2016.1251733
|
[1] | ZENG Kai, SUN Xiaoting, XING Baoying, FENG Yuyang. Process optimization and fracture characteristic analysis of DP780 high strength steel weld-bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 77-83. DOI: 10.12073/j.hjxb.20191017001 |
[2] | LI Xiaohong, ZHANG Yanhua, LI Zan, ZHANG Tiancang. Study on phase and texture of TC17(α + β)/TC17(β) linear friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 1-6. DOI: 10.12073/j.hjxb.20190219002 |
[3] | HUANG Zhichao, SONG Tianci, LAI Jiamei. Fatigue property and failure mechanism of self piercing riveted joints of TA1 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 41-46. DOI: 10.12073/j.hjxb.2019400069 |
[4] | LU Yi, HE Xiaocong, XING Baoying, ZHANG Xianlian. Effect of annealing treatment on the fatigue behavior of titanium alloy self-piecing riveted joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 124-128. DOI: 10.12073/j.hjxb.2018380083 |
[5] | ZHANG Long, ZENG Kai, HE Xiaocong, SUN Xinyu. Comparison of joint performance between spot weld bonding and resistance spot welding of titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(1): 55-30. DOI: 10.12073/j.hjxb.2018390013 |
[6] | SHAO Huakai, WU Aiping, ZOU Guisheng. Study on shear strength and fracture behavior of Cu-Sn system low-temperature TLP bonded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 13-16. |
[7] | CHEN Zhongyi, MA Yonglin, WANG Wenjun, XING Shuqing, LU Hengchang. Finite element analysis on post-weld heat treatment of heavy-section SA508-3 steel plate for nuclear pressure vessel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 80-84. |
[8] | CHEN Liang, LI Wenya, MA Tiejun, MA Caixia. Numerical analysis of linear friction welding process of steel S45C[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 91-94. |
[9] | JIN Yuhua, WANG Xijing, LI Changfeng, ZHANG Jie. Study on tensile properties of friction-stir-welded joints of 2024-M aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 69-72. |
[10] | ZHAO Zude, SHU Dayu, HUANG Jihua, HU Chuankai, KANG Feng. Strength and fracture character of SiCp/2009Al joint by composites reaction diffusion bonging with Al-Ag-Cu-Ti[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 100-104. |
1. |
陈琪,谢志雄,董仕节,解剑英. 高频感应焊TA2钛管焊后退火组织与性能研究. 湖北工业大学学报. 2024(01): 75-79 .
![]() | |
2. |
杜随更,刘冠翔,陈虎,胡弘毅,李菊. TC17(α+β)/TC17(β)线性摩擦焊接过程中焊合区组织及其织构演变. 机械工程学报. 2024(02): 99-106 .
![]() | |
3. |
高山,袁明强. Ti60/TC17异种钛合金惯性摩擦焊接头组织性能研究. 电焊机. 2023(08): 115-121+143 .
![]() | |
4. |
田助新,吴晓峰,杨梦. 焊接表面对线性摩擦焊轴向缩短量的影响. 航空精密制造技术. 2023(05): 33-34+70 .
![]() | |
5. |
杜随更,刘冠翔,李菊. 异质TC17线性摩擦焊接头焊后时效处理组织与性能. 焊接学报. 2022(07): 7-13+113-114 .
![]() | |
6. |
金俊龙,李菊,张传臣,常川川. 热处理对TC21钛合金线性摩擦焊接头组织与性能的影响. 焊接学报. 2022(09): 69-74+117 .
![]() | |
7. |
马核,李菊,王月,李晓红,张田仓,张彦华. 异态TC17钛合金线性摩擦焊接头微观组织与断裂韧性研究. 航空制造技术. 2022(21): 71-77 .
![]() | |
8. |
刘雷. 线性摩擦焊接摩擦振动伺服系统稳定性分析. 真空. 2021(02): 82-85 .
![]() | |
9. |
李睿,周军,张春波,乌彦全,梁武,秦丰. TC4/Ti17异质钛合金线性摩擦焊接头组织及力学性能. 机械制造文摘(焊接分册). 2021(02): 11-17 .
![]() | |
10. |
余学冉,陈云永. TC17钛合金线性摩擦焊接叶片单元件焊缝设计. 焊接. 2021(03): 26-29+62 .
![]() |