Citation: | BAO Liangliang, WANG Yong, ZHANG Hongjie, XU Liang, HAN Tao. Welding thermal cycle of the laser-arc hybrid welding of the EQ70 steel and its effects on the microstructure evolution of the heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 26-33. DOI: 10.12073/j.hjxb.20201207002 |
Bappa Acherjee. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60 − 71.
|
Zeng Huilin, Xu Yuanbin, Wang Changjiang, et al. Research on laser-arc hybrid welding technology for long-distance pipeline construction[J]. China Welding, 2018, 27(3): 53 − 58.
|
滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11): 61 − 64.
Teng Bin, Li Xiaoyu, Lei Zhen, et al. Analysis on cold crack sensitivity of low alloy high strength steel weld by laser-arc hybrid welding[J]. Transactions of the China welding institution, 2010, 31(11): 61 − 64.
|
严春妍, 易思, 张浩, 等. S355钢激光-MIG复合焊接头显微组织和残余应力[J]. 焊接学报, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
Yan Chunyan, Yi Si, Zhang Hao, et al. Investigation of microstructure and stress in laser-MIG hybrid welded S355 steel plates[J]. Transactions of the China Welding Institution, 2020, 41(6): 12 − 18. doi: 10.12073/j.hjxb.20191014001
|
肖荣诗, 吴世凯. 激光-电弧复合焊接的研究进展[J]. 中国激光, 2008, 35(11): 1680 − 1685. doi: 10.3321/j.issn:0258-7025.2008.11.004
Xiao Rongshi, Wu Shikai. Progress on laser-arc hybrid welding[J]. Chinese Journal of Lasers, 2008, 35(11): 1680 − 1685. doi: 10.3321/j.issn:0258-7025.2008.11.004
|
Wang X N, Zhang S H, Zhou J, et al. Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800 MPa hot-rolled Nb-Ti-Mo microalloyed steels[J]. Optics & Lasers in Engineering, 2017, 91: 86 − 96.
|
Hyatt C V, Magee K H, Porter J F, et al. Laser-assisted gas metal arc welding of 25-mm-thick HY-80 plate[J]. Welding Journal, 2001, 80(7): 163 − 172.
|
Bao L L, Wang Y, Han T. Microstructure and mechanical characterization of high strength low alloy steel welded joint by hybrid laser arc welding[C]//2019 the 7th International Conference on Mechanical Engineering, Materials Science and Civil Engineering. IOP Conference Series: Materials Science and Engineering. Sanya, China, 2020: 247−256.
|
Bao L L, Wang Y, Han T. Study on microstructure-toughness relationship in heat affected zone of EQ70 steel by laser-arc hybrid welding[J]. Materials Characterization. 2021, 171: 110788.
|
吴振, 王发展, 安高灵,等. 大型复杂结构件高效焊接热源[J]. 焊接学报, 2015, 36(10): 61 − 64.
Wu Zhen, Wang Fazhan, An Gaoling, et al. Research on efficient welding heat source model for large and complex structures[J]. Transactions of the China Welding Institution, 2015, 36(10): 61 − 64.
|
Xu G, Wu C, Qin G. Three thermal analysis models for laser, GMAW-P and laser+GMAW-P hybrid welding[J]. China Welding, 2009, 18(1): 35 − 39.
|
[1] | DENG Haoxiang, LIU Zhihong, WANG Xingfu, MA Jianguo, WU Jiefeng, Han Fusheng. Microstructure and mechanical properties of heat affected zone for high-Mn TWIP steel based on welding thermal simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 83-89. DOI: 10.12073/j.hjxb.20220325001 |
[2] | BAO Liangliang, LIU Fujian, XU Yanhong, ZHANG Xinming, OUYANG kai, HAN Tao. Investigation on microstructure and impact toughness of double-pass laser-arc hybrid welding heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 90-99. DOI: 10.12073/j.hjxb.20220303001 |
[3] | BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001 |
[4] | LIU Chang, DENG Caiyan, GONG Baoming, ZHANG Chengze. Effects of microstructure inhomogeneity on strain concentration of heat affected zone of TA15 titanium alloy electron beam weld joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(9): 49-52,81. DOI: 10.12073/j.hjxb.2019400234 |
[5] | SHI Jiahui, WANG Jianxin, LI Wenhang, WANG Jiayou, ZHU Qing. Research on shape of cut cavity and microstructure of heat affected zone during underwater flux-cored wire arc cutting process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(2): 97-100. |
[6] | ZHANG Qiang, HAN Janmin, YANG Zhiyong, CHEN Yue. Properties of heat affected zone for HG785D high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(7): 109-112. |
[7] | MI Zhenli, YANG Lin, LI Zhichao, JIANG Haitao. Study on heat-affected zone of TWIP steel after welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 9-12. |
[8] | LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44. |
[9] | ZHANG Yingqiao, ZHANG Hanqian, ZHAO Sixin, LIU Weiming. Effects of Nb on microstructure and toughness of high-strength structural steels heat affected zone at high heat input[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 96-100. |
[10] | YU Shengfu, YANG Ke, LEI Yi, YANG Hua. Grain refinement of heat affected zone of high strength low alloy steel by large heat input welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 17-20. |
1. |
王国伟,曹宇堃,郭枭,宋建廷,暴宋杰,韩莹. EQNiCr-3带极堆焊材料的微观组织与力学性能研究. 机械制造文摘(焊接分册). 2024(04): 6-10 .
![]() | |
2. |
李响,来佑彬,杨波,王冬阳,孙铭含,吴海龙,苑仁月,孙世杰,于锦. 等离子熔覆Fe-Cr-C合金涂层工艺优化及性能研究. 表面技术. 2020(06): 177-184 .
![]() |