Advanced Search
XIONG Zhiliang, WANG Ping, MENG Jinkui, SUN Guang, QIU Zhensheng. Redistribution analysis of welding residual stress of aluminum alloy CT specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 65-69. DOI: 10.12073/j.hjxb.20201006001
Citation: XIONG Zhiliang, WANG Ping, MENG Jinkui, SUN Guang, QIU Zhensheng. Redistribution analysis of welding residual stress of aluminum alloy CT specimen[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 65-69. DOI: 10.12073/j.hjxb.20201006001

Redistribution analysis of welding residual stress of aluminum alloy CT specimen

More Information
  • Received Date: October 05, 2020
  • Available Online: January 24, 2021
  • A finite element model of 7005 aluminum alloy weldment was established to simulate and analyze the redistribution of residual stress in the compact tensile specimen (CT specimen) extracted from the plate. The results show that when the notch of the CT specimen is in the weld center line, the transverse residual stress is compressed at both ends of the centerline, the middle is in the tensile state, and the longitudinal residual stress is in the compressed state, while when the notch is opened in the weld toe, the transverse residual stress is compressed at both ends, the middle is in the tensile state, and the longitudinal residual stress is in the tensile state. When the notch is in the base metal, the transverse residual stress is in the tensile state at both ends, the compression state in the middle, and the tensile state in the longitudinal residual stress. Further analysis shows that when the distance between the center line of the weld and the edge of the CT specimen exceeds the width of the specimen 1/4, the transverse residual stress at both ends is compressed and the middle is tensile, otherwise it shows the opposite rule. The longitudinal residual stress in the center of the weld decreases with the decrease of the width of the base metal. With the help of the 3-Bar model, it is found that when the width of the base metal on one side of the weld is less than 59 mm, the residual stress in the center line of the weld is compressed.
  • Hou C Y, Lawrence F V. Crack closure in weldments[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 19(6): 683 − 693.
    Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J]. International Journal of Fatigue, 2003, 25(1): 77 − 88. doi: 10.1016/S0142-1123(02)00038-5
    Fratini L, Pasta S, Reynolds A P. Fatigue crack growth in 2024-T351 friction stir welded joints: Longitudinal residual stress and microstructural effects[J]. International Journal of Fatigue, 2009, 31(3): 495 − 500. doi: 10.1016/j.ijfatigue.2008.05.004
    丁叁叁, 李强, 苟国庆. 残余应力对高速列车A7005铝合金焊接接头疲劳行为的影响[J]. 焊接学报, 2016, 37(9): 23 − 28.

    Ding Sansan, Li Qiang, Gou Guoqing. Effect of residual stress on fatigue behavior of welded joint of A7005 aluminum alloy for high-speed trcion[J]. Transactions of the China Welding Institution, 2016, 37(9): 23 − 28.
    张正伟, 张昭, 张洪武. 焊接残余应力对2024铝合金薄板疲劳寿命的影响[J]. 焊接学报, 2014, 35(10): 29 − 32.

    Zhang Zhengwei, Zhangzhao, Zhang Hongwu. Influence of welding residual stresses on fatigue life of Al 2024 plate[J]. Transactions of the China Welding Institution, 2014, 35(10): 29 − 32.
    王强. CRH2型动车车体底架焊接结构可靠性研究[D]. 哈尔滨工业大学, 2012.

    Wang Qiang. Research on reliability of vehicle chassis welded components of CRH2[D]. Harbin Institute of Technology, 2012.
    方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2008.

    Fang Hongyuan. Mechanics of welding structure[M]. Beijing: Mechanical Industry Press, 2008.
  • Related Articles

    [1]LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60.
    [2]YIN Ziqiang, ZHANG Guangjun, ZHAO Huihui, YUAN Xin, WU Lin. Design of human-machine interactive robotic arc welding remanufacturing system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 69-72.
    [3]SHEN Junqi, HU Shengsun, FENG Shengqiang, GAO Zhonglin. Bead geometry prediction based on SVM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 103-106.
    [4]ZHOU Lü, CHEN Shan-ben, LIN Tao, CHEN Wen-jie. Autonomous seam tracking based on local vision in arc robotic welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 49-52.
    [5]YU Xiu-ping, SUN Hua, ZHAO Xi-ren, Alexandre Gavrilov. Weld width prediction based on artificial neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (5): 17-19,45.
    [6]CAO Hai-peng, ZHAO Xi-hua, ZHAO He. Intelligent process design of resistance spot welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 21-24.
    [7]CAO Hai-peng, ZHAO Xi-hua, ZHAO Lei. An intelligent inference for resistance spot welding procedure parameters on CBR[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 1-3,14.
    [8]CHEN Jun-mei, LU Hao, WANG Jian-hua, CHEN Wei-xin, HAO Da-jun. Effect of Mesh Sizes on Welding Deformation Prediction Precision of Buicks Underframe Assembly[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (2): 33-35,39.
    [9]YE Feng, SONG Yong-lun, LI Di, CHEN Fu-gen. On-line Quality Monitoring in Robot Arc Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 5-7.
    [10]Zhao Xihua, Wang Chenyu. Parameter Selection Based on Expert System and Artificial Neural Network in Resistance Spot Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (4): 3-8.
  • Cited by

    Periodical cited type(1)

    1. 鲍亮亮,徐艳红,张新明,欧阳凯. 一次峰值温度对激光电弧复合焊热模拟临界再热粗晶区组织与韧性的影响. 材料导报. 2023(S2): 383-387 .

    Other cited types(0)

Catalog

    Article views (385) PDF downloads (31) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return