Advanced Search
JIANG Dawei, FAN Jiajie, HU Dong, FAN Xuejun, ZHANG Guoqi. Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 7-13. DOI: 10.12073/j.hjxb.20200911003
Citation: JIANG Dawei, FAN Jiajie, HU Dong, FAN Xuejun, ZHANG Guoqi. Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 7-13. DOI: 10.12073/j.hjxb.20200911003

Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation

More Information
  • Received Date: September 10, 2020
  • Available Online: April 14, 2021
  • To meet the requirements of low temperature packaging and high temperature operation for wide bandgap semiconductors, the traditional reflow soldering is gradually substituted by the metallic nanoparticle sintering interconnection. However, the high sintering densification is one of necessities to achieve the high reliable packaging. To reveal the mechanism of nano-copper particles sintering interconnection, this paper firstly establishes the relationship between the particle size ratio and the stacking porosity through the three-dimensional (3D) non-isodiametric double sphere stacking modeling. Then, the Monte Carlo simulation is performed to investigate the sintering process of nano-copper particles with different size ratios. Finally, a sintering experiment with the mixture of two types of nano-copper particles is used to validate the proposed models and simulations. The results show that, according to three 3D stacking models, the stacking porosity is lowest when the particle size ratio is between 10∶1 and 5∶1. Through the Monte Carlo simulation, the model with a particle size ratio of 5∶1 has the largest sintering shrinkage. The experiment by mixing the 250 nm and 50 nm nano-copper particle shows the highest relative density of sintered samples when the particle mass ratio is 8∶1, which is consistent with the theoretical calculations. Thus, the proposed method in this study can provide theoretical supports to the nano-copper sintering interconnection application and process optimization in the wide bandgap semiconductor packaging.
  • 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149 − 5161.

    Qian Zhaoming, Zhang Junming, Sheng Kuang. Current status and development of power electronic devices and their applications[J]. Proceedings of the Chinese Society of Electrical Engineering, 2014, 34(29): 5149 − 5161.
    Qian C, Gheitaghy A M, Fan J, et al. Thermal management on IGBT power electronic devices and modules[J]. IEEE Access, 2018(6): 12868 − 12884.
    邹贵生, 闫剑锋, 母凤文, 等. 微连接和纳连接的研究新进展[J]. 焊接学报, 2011, 32(4): 107 − 112.

    Zou Guisheng, Yan Jianfeng, Mu Fengwen, et al. New progress in the research of micro-connection and nano-connection[J]. Transactions of the China Welding Institution, 2011, 32(4): 107 − 112.
    Long Y, Wu J, Wang H, et al. Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers[J]. Journal of Materials Chemistry, 2011, 21(13): 4875 − 4881. doi: 10.1039/c0jm03838e
    Chen C N, Chen C P, Dong T Y, et al. Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature[J]. Acta Materialia, 2012, 60(16): 5914 − 5924. doi: 10.1016/j.actamat.2012.07.034
    Allen M, Leppäniemi J, Vilkman M, et al. Substrate-facilitated nanoparticle sintering and component interconnection procedure[J]. Nanotechnology, 2010, 21(47): 475204. doi: 10.1088/0957-4484/21/47/475204
    Bastús N G, Merkoçi F, Piella J, et al. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties[J]. Chemistry of Materials, 2014, 26(9): 2836 − 2846. doi: 10.1021/cm500316k
    Steinigeweg D, Schlücker S. Monodispersity and size control in the synthesis of 20−100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures[J]. Chemical Communications, 2012, 48: 8682 − 8684.
    Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction[J]. Journal of Physical Chemistry C, 2009, 113(16): 6573 − 6576. doi: 10.1021/jp900775b
    Tung H T, Chen I G, Kempson I M, et al. Shape-controlled synthesis of silver nanocrystals by X-ray irradiation for inkjet printing[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5930 − 5935. doi: 10.1021/am3015718
    Zhang R, Moon K S, Lin W, et al. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(10): 2018 − 2023. doi: 10.1039/b921072e
    Hiroshi Nishikawa, Tomoaki Hirano, Tadashi Takemoto, et al. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. Open Surface Science Journal, 2011, 3(1): 60 − 64.
    Yamakawa T, Takemoto T, Shimoda M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste[J]. Journal of Electronic Materials, 2013, 42(6): 1260 − 1267. doi: 10.1007/s11664-013-2583-2
    Li J J, Cheng C L, Shi T L, et al. Surface effect induced Cu-Cu bonding by Cu nanosolder paste[J]. Materials Letters, 2016, 184: 193 − 196. doi: 10.1016/j.matlet.2016.08.085
    Liu J, Chen H, Ji H, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289 − 33298.
    Yan J F, Zou G S, Hu A M, et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 2011, 21(40): 15981 − 15986. doi: 10.1039/c1jm12108a
    Lee J, Lee B, Jeong S, et al. Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering[J]. Thin Solid Films, 2014, 564: 264 − 268. doi: 10.1016/j.tsf.2014.06.005
    Kim D, Jeong S, Moon J, et al. Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation[J]. Applied Physics Letters, 2007, 91(7): 253 − 264.
    Park S H, Chung W H, Kim H S. Temperature changes of copper nanoparticle ink during flash light sintering[J]. Journal of Materials Processing Technology, 2014, 214(11): 2730 − 2738. doi: 10.1016/j.jmatprotec.2014.06.007
    Chung W H, Hwang H J, Lee S H, et al. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics[J]. Nanotechnology, 2013, 24(3): 035202. doi: 10.1088/0957-4484/24/3/035202
    Han W S, Hong J M, Kim H S, et al. Multi-pulsed white light sintering of printed Cu nanoinks[J]. Nanotechnology, 2011, 22(39): 395705. doi: 10.1088/0957-4484/22/39/395705
    Dai Y Y, Mei Z N, Anantha P, et al. Copper micro and nano particles mixture for 3D interconnections application[C]//IEEE. 2015 International 3D Systems Integration Conference (3DIC). Sendai, Japan, 2015: 1−25.
    肖勇. 复合纳米银颗粒低温烧结机理及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Xiao Yong. Research on the low-temperature sintering mechanism and performance of composite nano-silver particles[D]. Harbin: Harbin Institute of Technology, 2016.
    Farr R S, Groot R D. Close packing density of polydisperse hard spheres[J]. Journal of Chemical Physics, 2009, 131(24): 244104. doi: 10.1063/1.3276799
    Uche O U, Stillinger F H, Torquato S. Concerning maximal packing arrangements of binary disk mixtures[J]. Physica A: Statistical Mechanics and its Applications, 2004, 342(3-4): 428 − 446. doi: 10.1016/j.physa.2004.05.082
    Santiso E E, Müller E A. Dense packing of binary and polydisperse hard spheres[J]. Molecular Physics, 2002, 100(15): 2461 − 2469. doi: 10.1080/00268970210125313
    Yamada S, Kanno J, Miyauchi M. Multi-sized sphere packing in containers: optimization formula for obtaining the highest density with two different sized spheres[J]. Information and Media Technologies, 2011, 6(2): 493 − 500.
    Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids[J]. Science, 2004, 303(5660): 990 − 993. doi: 10.1126/science.1093010
    Min H, Lee B, Jeong S, et al. Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J]. Optics and Lasers in Engineering, 2016, 80(5): 12 − 16.
    Kallus Y. The Random packing density of nearly spherical particles[J]. Soft Matter, 2016, 12(18): 4123 − 4128. doi: 10.1039/C6SM00213G
    Prosser J H, Brugarolas T, Lee S, et al. Avoiding cracks in nanoparticle films[J]. Nano Letters, 2012, 12(10): 5287 − 5291. doi: 10.1021/nl302555k
    Zuo Y, Shen J, Xu H, et al. Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints[J]. Materials Letters, 2017, 199: 13 − 16. doi: 10.1016/j.matlet.2017.03.166
    Braginsky M, Tikare V, Olevsky E. Numerical simulation of solid state sintering[J]. International Journal of Solids & Structures, 2005, 42(2): 621 − 636.
    Fan J, Xu D, Zhang H, et al. Experimental Investigation on the sintering kinetics of nanosilver particles used in high-power electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(7): 1101 − 1109. doi: 10.1109/TCPMT.2020.2995634
  • Related Articles

    [1]DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
    [2]LI Kun, WANG Wei, SHAN Jiguo, WANG Xuyou. Correlation between plasma spectral characteristic and porosity during laser deep penetration welding of 6061 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 72-76.
    [3]MENG Gongge, ZHANG Hongyan, LIU Chao, GU Baisong. Wetting correlations between rosin & other flux components and Sn-9Zn/Cu[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 30-32.
    [4]MENG Gongge, CHU Jijun, LUAN Jingyue, GU Feng, LI Dan. Correlations between coating components and deposited metal compositions of environmental protective type basic electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 73-76.
    [5]ZHENG Shaoxian, ZHU Liang, CHEN Jianhong. Relationship between position of flux strips in arc zone of ultra-narrow gap and constricting arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (1): 13-15,20.
    [6]ZHU Liang, MIAO Hongli, JIN Jiang, Li Yuanbo. Characteristics of voltage and current waveforms of constricted arc with flux strips in ultra-narrow gap[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 85-88.
    [7]SHI Yu, HUANG Jiankang, NIE Jing, FAN Ding. Correlation of arc acoustic signals and droplet transfer in aluminum pulsed MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (3): 29-32.
    [8]ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Heating characteristic of constricting arc with flux strips in ultra- narrow gap welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 57-60,64.
    [9]ZHENG Shaoxian, ZHU Liang, ZHANG Xulei, CHEN Jianhong. Constricting arc characteristic with flux strips[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (8): 57-61.
    [10]LIU Jing-lei, CHEN Yan-bin, XU Qing-hong. Correlation of acoustic signals and weld depth in laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 72-75,80.
  • Cited by

    Periodical cited type(3)

    1. 王政伦,刘永胜,李炜. SLM工艺参数及酸洗处理对TC4钛合金多孔结构影响研究. 钢铁钒钛. 2025(02): 53-60 .
    2. 赵训茶,王文文,刘洁,汤超,刘鹏. 热处理改性对PTFE/PEEK多孔保持架材料摩擦学性能的影响研究. 塑料科技. 2025(04): 21-26 .
    3. 杨林沂,许明三,叶建华,韦铁平. 选区激光熔化成形不同偏移率拱形点阵结构力学性能. 焊接学报. 2024(08): 95-102+109 . 本站查看

    Other cited types(4)

Catalog

    Article views (521) PDF downloads (76) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return