Advanced Search
JIANG Dawei, FAN Jiajie, HU Dong, FAN Xuejun, ZHANG Guoqi. Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 7-13. DOI: 10.12073/j.hjxb.20200911003
Citation: JIANG Dawei, FAN Jiajie, HU Dong, FAN Xuejun, ZHANG Guoqi. Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(3): 7-13. DOI: 10.12073/j.hjxb.20200911003

Study on the mechanism of nano-copper particles sintering interconnection based on a non-isodiametric double sphere stacking model and Monte Carlo simulation

More Information
  • Received Date: September 10, 2020
  • Available Online: April 14, 2021
  • To meet the requirements of low temperature packaging and high temperature operation for wide bandgap semiconductors, the traditional reflow soldering is gradually substituted by the metallic nanoparticle sintering interconnection. However, the high sintering densification is one of necessities to achieve the high reliable packaging. To reveal the mechanism of nano-copper particles sintering interconnection, this paper firstly establishes the relationship between the particle size ratio and the stacking porosity through the three-dimensional (3D) non-isodiametric double sphere stacking modeling. Then, the Monte Carlo simulation is performed to investigate the sintering process of nano-copper particles with different size ratios. Finally, a sintering experiment with the mixture of two types of nano-copper particles is used to validate the proposed models and simulations. The results show that, according to three 3D stacking models, the stacking porosity is lowest when the particle size ratio is between 10∶1 and 5∶1. Through the Monte Carlo simulation, the model with a particle size ratio of 5∶1 has the largest sintering shrinkage. The experiment by mixing the 250 nm and 50 nm nano-copper particle shows the highest relative density of sintered samples when the particle mass ratio is 8∶1, which is consistent with the theoretical calculations. Thus, the proposed method in this study can provide theoretical supports to the nano-copper sintering interconnection application and process optimization in the wide bandgap semiconductor packaging.
  • 钱照明, 张军明, 盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149 − 5161.

    Qian Zhaoming, Zhang Junming, Sheng Kuang. Current status and development of power electronic devices and their applications[J]. Proceedings of the Chinese Society of Electrical Engineering, 2014, 34(29): 5149 − 5161.
    Qian C, Gheitaghy A M, Fan J, et al. Thermal management on IGBT power electronic devices and modules[J]. IEEE Access, 2018(6): 12868 − 12884.
    邹贵生, 闫剑锋, 母凤文, 等. 微连接和纳连接的研究新进展[J]. 焊接学报, 2011, 32(4): 107 − 112.

    Zou Guisheng, Yan Jianfeng, Mu Fengwen, et al. New progress in the research of micro-connection and nano-connection[J]. Transactions of the China Welding Institution, 2011, 32(4): 107 − 112.
    Long Y, Wu J, Wang H, et al. Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers[J]. Journal of Materials Chemistry, 2011, 21(13): 4875 − 4881. doi: 10.1039/c0jm03838e
    Chen C N, Chen C P, Dong T Y, et al. Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature[J]. Acta Materialia, 2012, 60(16): 5914 − 5924. doi: 10.1016/j.actamat.2012.07.034
    Allen M, Leppäniemi J, Vilkman M, et al. Substrate-facilitated nanoparticle sintering and component interconnection procedure[J]. Nanotechnology, 2010, 21(47): 475204. doi: 10.1088/0957-4484/21/47/475204
    Bastús N G, Merkoçi F, Piella J, et al. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties[J]. Chemistry of Materials, 2014, 26(9): 2836 − 2846. doi: 10.1021/cm500316k
    Steinigeweg D, Schlücker S. Monodispersity and size control in the synthesis of 20−100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures[J]. Chemical Communications, 2012, 48: 8682 − 8684.
    Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction[J]. Journal of Physical Chemistry C, 2009, 113(16): 6573 − 6576. doi: 10.1021/jp900775b
    Tung H T, Chen I G, Kempson I M, et al. Shape-controlled synthesis of silver nanocrystals by X-ray irradiation for inkjet printing[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5930 − 5935. doi: 10.1021/am3015718
    Zhang R, Moon K S, Lin W, et al. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(10): 2018 − 2023. doi: 10.1039/b921072e
    Hiroshi Nishikawa, Tomoaki Hirano, Tadashi Takemoto, et al. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste[J]. Open Surface Science Journal, 2011, 3(1): 60 − 64.
    Yamakawa T, Takemoto T, Shimoda M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste[J]. Journal of Electronic Materials, 2013, 42(6): 1260 − 1267. doi: 10.1007/s11664-013-2583-2
    Li J J, Cheng C L, Shi T L, et al. Surface effect induced Cu-Cu bonding by Cu nanosolder paste[J]. Materials Letters, 2016, 184: 193 − 196. doi: 10.1016/j.matlet.2016.08.085
    Liu J, Chen H, Ji H, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289 − 33298.
    Yan J F, Zou G S, Hu A M, et al. Preparation of PVP coated Cu NPs and the application for low-temperature bonding[J]. Journal of Materials Chemistry, 2011, 21(40): 15981 − 15986. doi: 10.1039/c1jm12108a
    Lee J, Lee B, Jeong S, et al. Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering[J]. Thin Solid Films, 2014, 564: 264 − 268. doi: 10.1016/j.tsf.2014.06.005
    Kim D, Jeong S, Moon J, et al. Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation[J]. Applied Physics Letters, 2007, 91(7): 253 − 264.
    Park S H, Chung W H, Kim H S. Temperature changes of copper nanoparticle ink during flash light sintering[J]. Journal of Materials Processing Technology, 2014, 214(11): 2730 − 2738. doi: 10.1016/j.jmatprotec.2014.06.007
    Chung W H, Hwang H J, Lee S H, et al. In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics[J]. Nanotechnology, 2013, 24(3): 035202. doi: 10.1088/0957-4484/24/3/035202
    Han W S, Hong J M, Kim H S, et al. Multi-pulsed white light sintering of printed Cu nanoinks[J]. Nanotechnology, 2011, 22(39): 395705. doi: 10.1088/0957-4484/22/39/395705
    Dai Y Y, Mei Z N, Anantha P, et al. Copper micro and nano particles mixture for 3D interconnections application[C]//IEEE. 2015 International 3D Systems Integration Conference (3DIC). Sendai, Japan, 2015: 1−25.
    肖勇. 复合纳米银颗粒低温烧结机理及其性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Xiao Yong. Research on the low-temperature sintering mechanism and performance of composite nano-silver particles[D]. Harbin: Harbin Institute of Technology, 2016.
    Farr R S, Groot R D. Close packing density of polydisperse hard spheres[J]. Journal of Chemical Physics, 2009, 131(24): 244104. doi: 10.1063/1.3276799
    Uche O U, Stillinger F H, Torquato S. Concerning maximal packing arrangements of binary disk mixtures[J]. Physica A: Statistical Mechanics and its Applications, 2004, 342(3-4): 428 − 446. doi: 10.1016/j.physa.2004.05.082
    Santiso E E, Müller E A. Dense packing of binary and polydisperse hard spheres[J]. Molecular Physics, 2002, 100(15): 2461 − 2469. doi: 10.1080/00268970210125313
    Yamada S, Kanno J, Miyauchi M. Multi-sized sphere packing in containers: optimization formula for obtaining the highest density with two different sized spheres[J]. Information and Media Technologies, 2011, 6(2): 493 − 500.
    Donev A, Cisse I, Sachs D, et al. Improving the density of jammed disordered packings using ellipsoids[J]. Science, 2004, 303(5660): 990 − 993. doi: 10.1126/science.1093010
    Min H, Lee B, Jeong S, et al. Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J]. Optics and Lasers in Engineering, 2016, 80(5): 12 − 16.
    Kallus Y. The Random packing density of nearly spherical particles[J]. Soft Matter, 2016, 12(18): 4123 − 4128. doi: 10.1039/C6SM00213G
    Prosser J H, Brugarolas T, Lee S, et al. Avoiding cracks in nanoparticle films[J]. Nano Letters, 2012, 12(10): 5287 − 5291. doi: 10.1021/nl302555k
    Zuo Y, Shen J, Xu H, et al. Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints[J]. Materials Letters, 2017, 199: 13 − 16. doi: 10.1016/j.matlet.2017.03.166
    Braginsky M, Tikare V, Olevsky E. Numerical simulation of solid state sintering[J]. International Journal of Solids & Structures, 2005, 42(2): 621 − 636.
    Fan J, Xu D, Zhang H, et al. Experimental Investigation on the sintering kinetics of nanosilver particles used in high-power electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(7): 1101 − 1109. doi: 10.1109/TCPMT.2020.2995634
  • Related Articles

    [1]FAN Jianglei, LONG Weimin, WANG Xingxing, GUO Yanhong, ZHANG Guangxing. Effect of inclusions on microstructure and mechanical properties of Ag-Cu-Zn filler metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 1-4.
    [2]LI Xiaoquan, CHU Yajie, YANG Zonghui, ZHANG Yan. Metallurgical mechanism of inclusion forming in droplet metal with arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 5-8.
    [3]GUO Xuming, QIAN Bainian, WANG Yu. Effects of nonmetallic inclusions on acicular ferrite nucleation in deposited metals of microalloyed steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 5-8,12.
    [4]LI Zhanjie, YU Shengfu, LEI Yi, YAO Fang. Effects of beneficial inclusions in CGHAZ of oxides metallurgy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 57-60.
    [5]YU Sheng fu, YU Yang chun, XIE Ming li, LI Zhi yuan. Effect of secondary thermal cycle on intragranular ferrite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 89-92,96.
    [6]YU Sheng-fu, ZHANG Yuan-qin, LÜ Wei-wen, XIE Ming-li, WANG Chang-hong. Role of CuS in Formation Nucleation of Acicular Ferrite[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (4): 72-76.
    [7]YANG Qing-xiang, YAO Mei, REN Xue-jun, LI Yan-li. Modifying Effect of Rare Earth Oxide on Inclusions in Hardfacing Metal of Medium-High Carbon Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 41-44.
    [8]Zhang Xiaocheng, Zhang Weiping. Thermodynamic analysis of inclusion in weld[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (3): 172-178.
    [9]Jiang Chonghua, Zhou Zhaowei, Ge Xuelian. Effect of inclusions and hydrogen on cold bending property of 15MnVNq(C、B) steel butt welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1993, (2): 104-110.
    [10]Wang Shiliang, Hu Weiping, Tang Bogang. INCLUSIONS AND NUCLEATION OF ACICULAR FERRITE IN WELD METALS IN HSLA[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (2): 81-90.
  • Cited by

    Periodical cited type(3)

    1. 刘军,孟宪国,李晨曦,李双吉,孙泽瑞,刘宏. 2219-T651铝合金激光摆动焊接接头微观组织和力学性能. 焊接学报. 2023(04): 7-13+129-130 . 本站查看
    2. 赵宇辉,贺晨,赵吉宾,邹健,王志国,何振丰. 增材/等材复合制备Sc/Zr改性Al-Mg合金工艺研究. 光学学报. 2023(07): 163-170 .
    3. 李会明,周惦武,王新宇,贺赵国,刘金水. 胶层-镍箔辅助激光焊钢/镁接头组织与性能. 焊接学报. 2022(08): 61-67+117 . 本站查看

    Other cited types(1)

Catalog

    Article views (505) PDF downloads (74) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return