Citation: | WU Xiaoyan, LUO Wei, WANG Yisong, JIANG Haitao. Simulation on friction stir welding 7055 aluminum alloy based on CEL model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 44-50, 59. DOI: 10.12073/j.hjxb.20200811001 |
Jiang Y M, Zhao Y, Zhao Z X, et al. The strengthening mechanism of FSWed spray formed 7055 aluminum alloy under water mist cooling condition[J]. Materials Characterization, 2020, 162: 100185.
|
Zhao Y, Wang Q Z, Chen H B, et al. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding[J]. Materials and Design, 2014, 56: 725 − 730.
|
李亚杰, 李峰峰, 吴志生, 等. 工艺参数对AZ31镁合金搅拌摩擦焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(4): 31 − 37. doi: 10.12073/j.hjxb.20191210003
Li Yajie, Li Fengfeng, Wu Zhisheng, et al. The effect of parameters on friction stir welded AZ31magnesium alloy[J]. Transactions of the China Welding Insititution, 2020, 41(4): 31 − 37. doi: 10.12073/j.hjxb.20191210003
|
刘其鹏, 顾乃建, 刘泽, 等. AA6061-T6板材搅拌摩擦焊温度场仿真[J]. 大连交通大学学报, 2018, 39(3): 80 − 85.
Liu Qipeng, Gu Naijian, Liu Ze, et al. Simulation of temperature field of AA6060-T6 sheet in firction stir welding[J]. Journal of Dalian Jiaotong University, 2018, 39(3): 80 − 85.
|
Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model[J]. Science and Technology of Welding and Joining, 2003, 8(3): 165 − 174. doi: 10.1179/136217103225010943
|
He X C, Gu F S, Ball A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1 − 66. doi: 10.1016/j.pmatsci.2014.03.003
|
朱智, 王敏, 张会杰. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299.
Zhu Zhi, Wang Min, Zhang Huijie. Simulation on material flow and defect during firciton stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.
|
沈洋. 搅拌摩擦焊温度场与残余应力场数值模拟[D]. 西安: 西安建筑科技大学, 2007.
Shen Yang. Thermomechanical numerical simulation of friciton stir welding[D]. Xi'an: Xi'an University of Architecture and Technology, 2007.
|
张文斌. 2A12铝合金搅拌摩擦焊温度场及塑性材料流动的数值分析[D]. 济南: 山东大学, 2010.
Zhang Wenbin. Numerical simulation of temperature fields and plastic material flow in friction stir welding of 2A12 aluminum alloy[D]. Jinan:Shandong University, 2010.
|
Aval H J, Serajzadeh S, Kokabi A H. Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061[J]. The International Journal of Advanced Manufacturing Technology, 2011, 61:149−160.
|
刘文龙. 搅拌摩擦焊接全过程热力耦合有限元模拟研究[D]. 南昌: 南昌航空大学, 2013.
Liu Wenlong. Coupled thermal-mechanical FEM analysis of firction stir welding whole process [D]. Nanchang: Nanchang Hangkong University, 2013.
|
Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, et al. Coupled eulerian lagrangian finite element modeling of friction stir welding processes[J]. Journal of Materials Processing Technology, 2013, 213(8): 1433 − 1439.
|
侯增. 2024铝合金/AZ31B镁合金异种金属搅拌摩擦焊温度场的数值模拟[D]. 北京: 中国石油大学, 2017.
Hou Zeng. Prediction of the temperature field during dissimilar friction stir welding of aluminum 2024 and magnesium AZ31B alloys[D]. Beijing: China University of Pertoleum, 2017.
|
周鹏展. 高强铝合金厚板搅拌摩擦焊研究[D]. 长沙: 中南大学, 2006.
Zhou Pengzhan. Friction stir welding of high strength aluminum alloy thick plates [D]. Changcha:Central South University, 2006.
|
闫亮明, 沈健, 李周兵, 等. 7055铝合金高温流变应力特征及本构方程[J]. 特种铸造及有色合金, 2009, 29(10): 892 − 895. doi: 10.3870/tzzz.2009.10.004
Yan Liangming, Shen Jian, Li Zhoubing, et al. The rheological stress characteristics and constitutive equation of 7055 aluminum alloy[J]. Special-cast and Non-ferrous Alloys, 2009, 29(10): 892 − 895. doi: 10.3870/tzzz.2009.10.004
|
Grujicic M, Pandurangan B, Cheeseman B A, et al. Modifications in the AA5083 Johnson-Cook materials model for use in friction stir welding computational analyses[J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2207 − 2217.
|
刘文辉, 张平, 杨迅雷, 等. 基于反求法的7055铝合金Johnson-Cook本构模型研究[J]. 兵器材料科学与工程, 2015, 38(4): 5 − 8.
Liu Wenhui, Zhang Ping, Yang Xunlei, et al. Johnson-Cook constitutive model for 7055 aluminum alloy based on reverse method[J]. Ordnance Material Science and Engineering, 2015, 38(4): 5 − 8.
|
李海利. 搅拌摩擦焊塑性金属三维流动数值模拟[D]. 南昌: 南昌航空大学, 2011.
Li Haili. Numerical simulation of three dimentional plastic metal flow of friciton stir welding[D]. Nanchang:Nanchang Hangkong University, 2011.
|
Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5): 372 − 376. doi: 10.1016/j.scriptamat.2007.10.031
|
[1] | WANG Yongdong, GONG Shulin, TANG Mingri, SONG Min. Effect of laser cladding process on the microstructure and properties of high entropy alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 116-122. DOI: 10.12073/j.hjxb.20220928001 |
[2] | TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001 |
[3] | SU Yunhai, LIANG Xuewei, DENG Yue, LIU Yunqi. Microstructure and property analysis of FeAlCuCrNiNbx high-entropy alloy surfacing layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 38-43, 50. DOI: 10.12073/j.hjxb.20191015001 |
[4] | ZHOU Li, ZHANG Renxiao, SHU Fengyuan, HUANG Yongxian, FENG Jicai. Microstructure and mechanical properties of friction stir welded joint of Q235 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 80-84. DOI: 10.12073/j.hjxb.2019400076 |
[5] | SHEN Yanjin, LI Xuefeng, CHEN Xueyong. Effect of ultrasonic power on microstructure and properties of Fe-Cr-V-C coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(5): 74-78. DOI: 10.12073/j.hjxb.20170516 |
[6] | ZHANG Yu, GUO Jing, LUO Zhen, BI Jing, GAO Jingjun, SONG Renfeng. Effects of joint type on microstructure and mechanical properties of Al/brass joint welded by thermo-compensated resistance spot welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(3): 37-40. |
[7] | HAN Bin, ZHANG Mengke, CUI Gang, WANG Yong. Microstructure and properties of Ni based alloy composite coating by laser cladding-ion sulfurizing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 1-4,96. |
[8] | WU Yang, YU Gang, HE Xiuli, NING Weijian. Microstructure and properties of Fe-W composite coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 37-40,44. |
[9] | HE Qingkun, WANG Yong, ZHAO Weimin, CHENG Yiyuan. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 77-80100. |
[10] | HE Dingyong, XU Jing, MA Ran, JIANG Jianmin, WANG Zhihui. Wear resistance properties of micron-WC reinforced Ni60 coating by high frequency induction cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (8): 1-4. |
1. |
沈虎,李先芬,叶俊洋,张雅婷,华鹏,刘大双. SiC-Ni60涂层中添加nano-Cu包覆MoS_2对其组织和摩擦磨损性能的影响. 焊接学报. 2024(09): 69-75 .
![]() | |
2. |
马凯,冯力,赵燕春,刘建军. 激光重熔合成FeCrAlCu(Ni, Co)高熵合金涂层组织与耐磨性能(英文). 稀有金属材料与工程. 2024(10): 2747-2754 .
![]() |