Citation: | WU Xiaoyan, LUO Wei, WANG Yisong, JIANG Haitao. Simulation on friction stir welding 7055 aluminum alloy based on CEL model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(7): 44-50, 59. DOI: 10.12073/j.hjxb.20200811001 |
Jiang Y M, Zhao Y, Zhao Z X, et al. The strengthening mechanism of FSWed spray formed 7055 aluminum alloy under water mist cooling condition[J]. Materials Characterization, 2020, 162: 100185.
|
Zhao Y, Wang Q Z, Chen H B, et al. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding[J]. Materials and Design, 2014, 56: 725 − 730.
|
李亚杰, 李峰峰, 吴志生, 等. 工艺参数对AZ31镁合金搅拌摩擦焊接头组织和性能的影响[J]. 焊接学报, 2020, 41(4): 31 − 37. doi: 10.12073/j.hjxb.20191210003
Li Yajie, Li Fengfeng, Wu Zhisheng, et al. The effect of parameters on friction stir welded AZ31magnesium alloy[J]. Transactions of the China Welding Insititution, 2020, 41(4): 31 − 37. doi: 10.12073/j.hjxb.20191210003
|
刘其鹏, 顾乃建, 刘泽, 等. AA6061-T6板材搅拌摩擦焊温度场仿真[J]. 大连交通大学学报, 2018, 39(3): 80 − 85.
Liu Qipeng, Gu Naijian, Liu Ze, et al. Simulation of temperature field of AA6060-T6 sheet in firction stir welding[J]. Journal of Dalian Jiaotong University, 2018, 39(3): 80 − 85.
|
Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: input torque based model[J]. Science and Technology of Welding and Joining, 2003, 8(3): 165 − 174. doi: 10.1179/136217103225010943
|
He X C, Gu F S, Ball A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1 − 66. doi: 10.1016/j.pmatsci.2014.03.003
|
朱智, 王敏, 张会杰. 基于CEL方法搅拌摩擦焊材料流动及缺陷的模拟[J]. 中国有色金属学报, 2018, 28(2): 294 − 299.
Zhu Zhi, Wang Min, Zhang Huijie. Simulation on material flow and defect during firciton stir welding based on CEL method[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(2): 294 − 299.
|
沈洋. 搅拌摩擦焊温度场与残余应力场数值模拟[D]. 西安: 西安建筑科技大学, 2007.
Shen Yang. Thermomechanical numerical simulation of friciton stir welding[D]. Xi'an: Xi'an University of Architecture and Technology, 2007.
|
张文斌. 2A12铝合金搅拌摩擦焊温度场及塑性材料流动的数值分析[D]. 济南: 山东大学, 2010.
Zhang Wenbin. Numerical simulation of temperature fields and plastic material flow in friction stir welding of 2A12 aluminum alloy[D]. Jinan:Shandong University, 2010.
|
Aval H J, Serajzadeh S, Kokabi A H. Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061[J]. The International Journal of Advanced Manufacturing Technology, 2011, 61:149−160.
|
刘文龙. 搅拌摩擦焊接全过程热力耦合有限元模拟研究[D]. 南昌: 南昌航空大学, 2013.
Liu Wenlong. Coupled thermal-mechanical FEM analysis of firction stir welding whole process [D]. Nanchang: Nanchang Hangkong University, 2013.
|
Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, et al. Coupled eulerian lagrangian finite element modeling of friction stir welding processes[J]. Journal of Materials Processing Technology, 2013, 213(8): 1433 − 1439.
|
侯增. 2024铝合金/AZ31B镁合金异种金属搅拌摩擦焊温度场的数值模拟[D]. 北京: 中国石油大学, 2017.
Hou Zeng. Prediction of the temperature field during dissimilar friction stir welding of aluminum 2024 and magnesium AZ31B alloys[D]. Beijing: China University of Pertoleum, 2017.
|
周鹏展. 高强铝合金厚板搅拌摩擦焊研究[D]. 长沙: 中南大学, 2006.
Zhou Pengzhan. Friction stir welding of high strength aluminum alloy thick plates [D]. Changcha:Central South University, 2006.
|
闫亮明, 沈健, 李周兵, 等. 7055铝合金高温流变应力特征及本构方程[J]. 特种铸造及有色合金, 2009, 29(10): 892 − 895. doi: 10.3870/tzzz.2009.10.004
Yan Liangming, Shen Jian, Li Zhoubing, et al. The rheological stress characteristics and constitutive equation of 7055 aluminum alloy[J]. Special-cast and Non-ferrous Alloys, 2009, 29(10): 892 − 895. doi: 10.3870/tzzz.2009.10.004
|
Grujicic M, Pandurangan B, Cheeseman B A, et al. Modifications in the AA5083 Johnson-Cook materials model for use in friction stir welding computational analyses[J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2207 − 2217.
|
刘文辉, 张平, 杨迅雷, 等. 基于反求法的7055铝合金Johnson-Cook本构模型研究[J]. 兵器材料科学与工程, 2015, 38(4): 5 − 8.
Liu Wenhui, Zhang Ping, Yang Xunlei, et al. Johnson-Cook constitutive model for 7055 aluminum alloy based on reverse method[J]. Ordnance Material Science and Engineering, 2015, 38(4): 5 − 8.
|
李海利. 搅拌摩擦焊塑性金属三维流动数值模拟[D]. 南昌: 南昌航空大学, 2011.
Li Haili. Numerical simulation of three dimentional plastic metal flow of friciton stir welding[D]. Nanchang:Nanchang Hangkong University, 2011.
|
Arbegast W J. A flow-partitioned deformation zone model for defect formation during friction stir welding[J]. Scripta Materialia, 2008, 58(5): 372 − 376. doi: 10.1016/j.scriptamat.2007.10.031
|
1. |
吴勇,孟施旭,孙清云,陈辉,夏思瑶,杨甫,夏春怀,杨汉哲. Inconel625与Inconel601合金耐高温氯离子腐蚀性能及机理的比较研究. 金属热处理. 2023(09): 208-213 .
![]() | |
2. |
郭枭,谷宇,韩莹,徐锴,王岩,姜英龙. Inconel 625合金堆焊金属开裂机理研究. 焊接学报. 2023(11): 117-123+135-136 .
![]() |