Citation: | JU Jianzhong, REN Zhaohui, LIU Dapeng, LIU Jialong. Thermo-mechanical coupling analysis of consumable-rod friction welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 93-99. DOI: 10.12073/j.hjxb.2019400269 |
张 旭. 管线钢摩擦堆焊工艺与组织性能研究[D]. 天津: 天津大学, 2017.
|
张彦华, 姚君山. 耗材摩擦焊技术及其应用前景[J]. 中国机械工程, 2000, 11(9): 1010 − 1012. doi: 10.3321/j.issn:1004-132X.2000.09.014
Zhang Yanhua, Yao Junshan. Consumable-rod friction welding technology and its application prospects[J]. China Mechanical Engineering, 2000, 11(9): 1010 − 1012. doi: 10.3321/j.issn:1004-132X.2000.09.014
|
Fitseva V, Hanke S, Santos J F D. Influence of rotational speed on process characteristics in friction surfacing of Ti-6Al-4V[J]. Materials and Manufacturing Processes, 2017, 32(5): 557 − 563. doi: 10.1080/10426914.2016.1257799
|
Galvis J C, Oliveira P H F, Hupalo M F, et al. Influence of friction surfacing process parameters to deposit AA6351-T6 over AA5052-H32 using conventional milling machine[J]. Journal of Materials Processing Technology, 2017, 245: 91 − 105. doi: 10.1016/j.jmatprotec.2017.02.016
|
Hanke S, Sena I, Coelho R S, et al. Microstructural features of dynamic recrystallization in alloy 625 friction surfacing coatings[J]. Materials and Manufacturing Processes, 2017, 33(3): 270 − 276.
|
Rafi H K, Ram G D J, Phanikumar G, et al. Friction surfaced tool steel (H13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity[J]. Surface and Coatings Technology, 2010, 205(1): 232 − 242. doi: 10.1016/j.surfcoat.2010.06.052
|
Hanke S, Santos J F D. Comparative study of severe plastic deformation at elevated temperatures of two aluminium alloys during friction surfacing[J]. Journal of Materials Processing Technology, 2017, 247: 257 − 267. doi: 10.1016/j.jmatprotec.2017.04.021
|
李付国, 聂 蕾, 李庆华, 等. GH4169合金惯性摩擦焊接过程组织计算与预测[J]. 焊接学报, 2002, 23(1): 30 − 33. doi: 10.3321/j.issn:0253-360X.2002.01.009
Li Fuguo, Nie Lei, Li Qinghua, et al. Microstructure simulation and prediction of IN-718 superalloy in inertial friction welding[J]. Transactions of the China Welding Institution, 2002, 23(1): 30 − 33. doi: 10.3321/j.issn:0253-360X.2002.01.009
|
张全忠, 张立文, 桂方亮, 等. GH4169合金连续驱动摩擦焊接过程三维数值模拟[J]. 塑性工程学报, 2005, 12(6): 109 − 113. doi: 10.3969/j.issn.1007-2012.2005.06.026
Zhang Quanzhong, Zhang Liwen, Gui Fangliang, et al. 3-D numerical simulation of continuous-drive friction welding process of GH4169 alloy[J]. Journal of Plasticity Engineering, 2005, 12(6): 109 − 113. doi: 10.3969/j.issn.1007-2012.2005.06.026
|
Riahi M, Nazari H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1–4): 143 − 152. doi: 10.1007/s00170-010-3038-z
|
Mehra V, Pahari S, Savita A N, et al. Tip failure and residual velocity in impact of hollow Al-6061 T6 projectiles on thin Al-6061 T6 Plates[J]. Procedia Engineering, 2017, 173: 271 − 277. doi: 10.1016/j.proeng.2016.12.012
|
Boldyrev I S, Shchurov I A, Nikonov A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces’ prediction[J]. Procedia Engineering, 2016, 150: 866 − 870. doi: 10.1016/j.proeng.2016.07.031
|
梁荣环. TC4钛合金线性摩擦焊接过程数值模拟研究[D]. 南昌: 南昌航空大学, 2014.
|
王陆钊, 侯振国, 陈晓霞, 等. 铝合金搅拌摩擦焊完全热力耦合数值模拟[J]. 金属加工: 冷加工, 2016(S1): 690 − 692.
Wang Luzhao, Hou Zhenguo, Chen Xiaoxia, et al. Complete thermo-mechanical coupling numerical simulation of friction stir welding of aluminium alloy[J]. Metal Working (Metal Cutting), 2016(S1): 690 − 692.
|
Vilaca P, Gandra J, Vidal C. Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling[M]. Aluminium Alloys-New Trends in Fabrication and Applications, 2012.
|
姚君山, 孟凡新, 王国庆, 等. 耗材摩擦焊中的耗材过渡与成形机理研究[J]. 中国机械工程, 2002, 13(23): 2052 − 2056. doi: 10.3321/j.issn:1004-132X.2002.23.019
Yao Junshan, Meng Fanxin, Wang Guoqing, et al. Study on the mechanism of metal transferring and shaping during consumable-rod friction welding[J]. China Mechanical Engineering, 2002, 13(23): 2052 − 2056. doi: 10.3321/j.issn:1004-132X.2002.23.019
|
1. |
朱海,刘琪,张剑,晏小龙,李砚峰. 基于数值模拟和双响应面的FSD-AM预热工艺参数优化. 塑性工程学报. 2024(07): 124-131 .
![]() |