Citation: | ZHANG Chengzhu, CHEN Hui, CAI Chuang, YANG Xiaoyi, CHEN Yong. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 89-96. DOI: 10.12073/j.hjxb.20200618001 |
Yao Caizhen, Ye Yayun, Jia Baoshen, et al. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property[J]. Applied Surface Science, 2017, 425: 1118 − 1124. doi: 10.1016/j.apsusc.2017.07.157
|
Zhang F D, Liu H, Suebka C, et al. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy[J]. Applied Surface Science, 2018, 435: 452 − 461. doi: 10.1016/j.apsusc.2017.11.141
|
Tam A C, Park H K, Grigoropoulos C P. Laser cleaning of surface contaminants[J]. Applied Surface Science, 1998, s 127–129: 721 − 725.
|
Buccolieri G, Nassisi V, Buccolieri A, et al. Laser cleaning of a bronze bell[J]. Applied Surface Science, 2013, 272(5): 55 − 58.
|
齐扬, 叶亚云, 王海军, 等. 激光清除石质文物表面污染物的作用机制[J]. 中国激光, 2015, 42(6): 0603001 − 107. doi: 10.3788/CJL201542.0603001
Qi Yang, Ye Yayun, Wang Haijun, et al. Mechanisms of laser cleaning of contamination on surface of stonework[J]. Chinese Journal of Lasers, 2015, 42(6): 0603001 − 107. doi: 10.3788/CJL201542.0603001
|
Kearns A, Fischer C, Watkins K G, et al. Laser removal of oxides from a copper substrate using Q-switched Nd: YAG radiation at 1064nm, 532nm and 266nm[J]. Applied Surface Science, 1998, s 127–129: 773 − 780.
|
Alshaer A W, Li L, Mistry A. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture[J]. Optics & Laser Technology, 2014, 64(4): 162 − 171.
|
于影霞, 丁江灏, 谢学涛, 等. 转向架用SMA490BW钢焊接接头超高周疲劳性能的影响因素[J]. 中国铁道科学, 2018, 39(1): 100 − 107. doi: 10.3969/j.issn.1001-4632.2018.01.14
Yu Yingxia, Ding Jianghao, Xie Xuetao, et al. Influence factors for very high cycle fatigue performance of SMA490BW steel welded joint for bogie[J]. China Railway Science, 2018, 39(1): 100 − 107. doi: 10.3969/j.issn.1001-4632.2018.01.14
|
何柏林, 邓海鹏, 魏康. 超声冲击对SMA490BW钢焊接接头超高周疲劳性能的影响[J]. 中国表面工程, 2017, 30(4): 64 − 70. doi: 10.11933/j.issn.1007-9289.20170307002
He Bolin, Deng Haipeng, Wang Kang. Influence of UIT on VHCF Performance of SMA490BW steel welded joints[J]. China Surface Engineering, 2017, 30(4): 64 − 70. doi: 10.11933/j.issn.1007-9289.20170307002
|
Psyllaki P, Oltra R. Preliminary study on the laser cleaning of stainless steels after high temperature oxidation[J]. Materials Science & Engineering A, 2009, 282(1): 145 − 152.
|
Eklund B, Johansson L, Ytreberg E. Contamination of a boatyard for maintenance of pleasure boats[J]. Journal of Soils & Sediments, 2014, 14(5): 955 − 967.
|
佟艳群, 张昂, 黄建宇, 等. 焊前激光预处理的铝合金表面氧含量的分布及影响[J]. 中国激光, 2019, 46(2): 56 − 64.
Tong Yanqun, Zhang Ang, Huang Jianyu, et al. Distribution and influence of oxygen content of laser pretreated aluminum alloy surface before welding[J]. Chinese Journal of Lasers, 2019, 46(2): 56 − 64.
|
刘洪伟, 周毅鸣. 船用板材激光除锈应用技术[J]. 造船技术, 2016(6): 87 − 93. doi: 10.3969/j.issn.1000-3878.2016.06.016
Liu Hongwei, Zhou Yiming. Technology and application of optical fiber laser derusting of ship steel plates[J]. Marine Technology, 2016(6): 87 − 93. doi: 10.3969/j.issn.1000-3878.2016.06.016
|
Li Huating, Zhou Jianzhong, Sun Qi, et al. Electrochemical corrosion properties of AH32 steel via laser cleaning[J]. Laser & Optoelectronics Progress, 2019, 56(21): 123 − 128.
|
Vagapov I K, Ganiyev M M, Shinkaryov A S. Studies of ultrasonic impact machining influence on the value and distribution of residual stresses in welded blanks[J]. Russian Aeronautics, 2005, 48(2): 85 − 90.
|
Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment[J]. Materials Letters, 2015, 139: 462 − 466. doi: 10.1016/j.matlet.2014.10.141
|
Lin J, Ma N, Lei Y, et al. Measurement of residual stress in arc welded lap joints by cosα, X-ray diffraction method[J]. Journal of Materials Processing Technology, 2016, 243: 387 − 394.
|
Yang G, Wang B, Tawfiq K, et al. Electropolishing of surfaces: theory and applications[J]. Surface Engineering, 2017, 33(2): 1 − 18.
|
Weng L, Wu H Y, Du L X. Corrosion behavior of high-Ti weathering resistant steel in simulated marine climate[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 94 − 99.
|
Park J U, Lee H W. Effects of initial condition of steel plate on welding deformation and residual stress due to welding[J]. Journal of Mechanical Science & Technology, 2007, 21(3): 426 − 435.
|
Chen Jianjun. Design and development of high-performance weathering steel corrosion test cycle infiltration system[D]. Nanjing: Northeastern University, 2011.
|
Li Zerong, Li Bin. Influences of different steel materials on the formation rates of bluing coatings[J]. Plating & Finishing, 2017, 39(2): 39 − 42.
|
Koch J, Korte F, Bauer T, et al. Nanotexturing of gold films by femtosecond laser-induced melt dynamics[J]. Applied Physics A, 2005, 81(2): 325 − 328. doi: 10.1007/s00339-005-3212-6
|
Masato Y, Hiroo N, Toshihei M, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North Americaf[J]. ISIJ International, 1998, 38(3): 285 − 290. doi: 10.2355/isijinternational.38.285
|
张侠洲, 高立军, 姚仲成, 等. 合金元素对耐候熔敷金属力学及耐蚀性能的影响[J]. 焊接学报, 2019, 40(5): 154 − 160. doi: 10.12073/j.hjxb.2019400144
Zhang Xiazhou, Gao Lijun, Yao Zhongcheng, et al. Effect of alloy element on mechanical and corrosion resistance properties of weathering steel deposited metal[J]. Transactions of the China Welding Institution, 2019, 40(5): 154 − 160. doi: 10.12073/j.hjxb.2019400144
|
Horton D. Foreword: Carbohydrate research: a half century of carbohydrate science[J]. Carbohydrate Research, 2015, 403: 3 − 7. doi: 10.1016/j.carres.2014.06.016
|
[1] | HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149 |
[2] | JIN Yuhua1, GAN Ruigen1, SHAO Qingfeng1, LI Changfeng1. Growth behaviour of Al-Mg intermetallics during post weld annealing treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 68-72. DOI: 10.12073/j.hjxb.20150808001 |
[3] | LIU Ning, HUANG Jiankang, CHEN Manjiao, SHI Yu, CAO Rui. Growth analysis of intermetallic compounds on aluminum-steel MIG-brazing interface based on Monte Carlo method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 55-58,62. |
[4] | QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38. |
[5] | TIAN Ye, WU Yiping, AN Bing, LONG Danfeng. Evolution of interfacial intermetallic compound in small solder joint of fine pitch flip chip during reflow[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 100-104. |
[6] | QI Kai, WANG Fengjiang, LAI Zhongmin. Inhibition growth of intermetallic compounds at solder/Cu of by addition of Zn into Sn-3.5Ag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 57-60. |
[7] | ZHOU Yong, YANG GuanJun, WU Xian, LI Changjiu. Formation characteristics of Ni/Ti intermetallics through annealing of layered Ni/Ti[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 41-44. |
[8] | ZHOU Yong, YANG Guanjun, WANG Hongduo, LI Geng, LI Changjiu. Effect of annealing treamenton formation of intermetallic phase in cold-sprayed Ni/Ti mechanical alloying coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 45-48. |
[9] | ZHU Dongmei, WANG Xibao. Mcrostrueture of Fe3A1 intermetallic compound produced by plasma cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 17-19,24. |
[10] | HE Peng, FENG Ji-cai, QIAN Yi-yu, ZHANG Jiu-hai. Forming Mechanism of interface intermetallic Compounds for Difusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 53-55. |