Advanced Search
ZHANG Chengzhu, CHEN Hui, CAI Chuang, YANG Xiaoyi, CHEN Yong. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 89-96. DOI: 10.12073/j.hjxb.20200618001
Citation: ZHANG Chengzhu, CHEN Hui, CAI Chuang, YANG Xiaoyi, CHEN Yong. Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 89-96. DOI: 10.12073/j.hjxb.20200618001

Effect of laser cleaning on surface stress and corrosion of SMA490BW steel welded joint

More Information
  • Received Date: June 17, 2020
  • Available Online: January 31, 2021
  • In order to ensure high quality weathering steel welding, we introduce picosecond pulse laser cleaning technology into welded joint cleaning. This paper studied the effect of picosecond pulsed laser cleaning on stress corrosion resistance of SMA490BW weathering steel welded joints. X-ray residual stress test shown that: The residual stress on the surface of the specimens after laser cleaning increased 130 ~ 200 MPa, which was not conducive to the performance of stress corrosion. But, the cyclic corrosion test proved that: The corrosion resistance of the specimen surface has been improved by laser cleaning, which is helpful to the stress corrosion resistance of the joint. Finally, the three-point bending stress corrosion test proved that: Laser cleaning can improve the stress corrosion resistance of the weathering steel joint. The reason is that the laser cleaning makes the surface formed micron scale (0.8 ~ 1.2 μm) tightly packed columnar particles, which improved the corrosion resistance more than the influence of the residual tensile stress.
  • Yao Caizhen, Ye Yayun, Jia Baoshen, et al. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property[J]. Applied Surface Science, 2017, 425: 1118 − 1124. doi: 10.1016/j.apsusc.2017.07.157
    Zhang F D, Liu H, Suebka C, et al. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy[J]. Applied Surface Science, 2018, 435: 452 − 461. doi: 10.1016/j.apsusc.2017.11.141
    Tam A C, Park H K, Grigoropoulos C P. Laser cleaning of surface contaminants[J]. Applied Surface Science, 1998, s 127–129: 721 − 725.
    Buccolieri G, Nassisi V, Buccolieri A, et al. Laser cleaning of a bronze bell[J]. Applied Surface Science, 2013, 272(5): 55 − 58.
    齐扬, 叶亚云, 王海军, 等. 激光清除石质文物表面污染物的作用机制[J]. 中国激光, 2015, 42(6): 0603001 − 107. doi: 10.3788/CJL201542.0603001

    Qi Yang, Ye Yayun, Wang Haijun, et al. Mechanisms of laser cleaning of contamination on surface of stonework[J]. Chinese Journal of Lasers, 2015, 42(6): 0603001 − 107. doi: 10.3788/CJL201542.0603001
    Kearns A, Fischer C, Watkins K G, et al. Laser removal of oxides from a copper substrate using Q-switched Nd: YAG radiation at 1064nm, 532nm and 266nm[J]. Applied Surface Science, 1998, s 127–129: 773 − 780.
    Alshaer A W, Li L, Mistry A. The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture[J]. Optics & Laser Technology, 2014, 64(4): 162 − 171.
    于影霞, 丁江灏, 谢学涛, 等. 转向架用SMA490BW钢焊接接头超高周疲劳性能的影响因素[J]. 中国铁道科学, 2018, 39(1): 100 − 107. doi: 10.3969/j.issn.1001-4632.2018.01.14

    Yu Yingxia, Ding Jianghao, Xie Xuetao, et al. Influence factors for very high cycle fatigue performance of SMA490BW steel welded joint for bogie[J]. China Railway Science, 2018, 39(1): 100 − 107. doi: 10.3969/j.issn.1001-4632.2018.01.14
    何柏林, 邓海鹏, 魏康. 超声冲击对SMA490BW钢焊接接头超高周疲劳性能的影响[J]. 中国表面工程, 2017, 30(4): 64 − 70. doi: 10.11933/j.issn.1007-9289.20170307002

    He Bolin, Deng Haipeng, Wang Kang. Influence of UIT on VHCF Performance of SMA490BW steel welded joints[J]. China Surface Engineering, 2017, 30(4): 64 − 70. doi: 10.11933/j.issn.1007-9289.20170307002
    Psyllaki P, Oltra R. Preliminary study on the laser cleaning of stainless steels after high temperature oxidation[J]. Materials Science & Engineering A, 2009, 282(1): 145 − 152.
    Eklund B, Johansson L, Ytreberg E. Contamination of a boatyard for maintenance of pleasure boats[J]. Journal of Soils & Sediments, 2014, 14(5): 955 − 967.
    佟艳群, 张昂, 黄建宇, 等. 焊前激光预处理的铝合金表面氧含量的分布及影响[J]. 中国激光, 2019, 46(2): 56 − 64.

    Tong Yanqun, Zhang Ang, Huang Jianyu, et al. Distribution and influence of oxygen content of laser pretreated aluminum alloy surface before welding[J]. Chinese Journal of Lasers, 2019, 46(2): 56 − 64.
    刘洪伟, 周毅鸣. 船用板材激光除锈应用技术[J]. 造船技术, 2016(6): 87 − 93. doi: 10.3969/j.issn.1000-3878.2016.06.016

    Liu Hongwei, Zhou Yiming. Technology and application of optical fiber laser derusting of ship steel plates[J]. Marine Technology, 2016(6): 87 − 93. doi: 10.3969/j.issn.1000-3878.2016.06.016
    Li Huating, Zhou Jianzhong, Sun Qi, et al. Electrochemical corrosion properties of AH32 steel via laser cleaning[J]. Laser & Optoelectronics Progress, 2019, 56(21): 123 − 128.
    Vagapov I K, Ganiyev M M, Shinkaryov A S. Studies of ultrasonic impact machining influence on the value and distribution of residual stresses in welded blanks[J]. Russian Aeronautics, 2005, 48(2): 85 − 90.
    Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment[J]. Materials Letters, 2015, 139: 462 − 466. doi: 10.1016/j.matlet.2014.10.141
    Lin J, Ma N, Lei Y, et al. Measurement of residual stress in arc welded lap joints by cosα, X-ray diffraction method[J]. Journal of Materials Processing Technology, 2016, 243: 387 − 394.
    Yang G, Wang B, Tawfiq K, et al. Electropolishing of surfaces: theory and applications[J]. Surface Engineering, 2017, 33(2): 1 − 18.
    Weng L, Wu H Y, Du L X. Corrosion behavior of high-Ti weathering resistant steel in simulated marine climate[J]. Transactions of Materials and Heat Treatment, 2018, 39(5): 94 − 99.
    Park J U, Lee H W. Effects of initial condition of steel plate on welding deformation and residual stress due to welding[J]. Journal of Mechanical Science & Technology, 2007, 21(3): 426 − 435.
    Chen Jianjun. Design and development of high-performance weathering steel corrosion test cycle infiltration system[D]. Nanjing: Northeastern University, 2011.
    Li Zerong, Li Bin. Influences of different steel materials on the formation rates of bluing coatings[J]. Plating & Finishing, 2017, 39(2): 39 − 42.
    Koch J, Korte F, Bauer T, et al. Nanotexturing of gold films by femtosecond laser-induced melt dynamics[J]. Applied Physics A, 2005, 81(2): 325 − 328. doi: 10.1007/s00339-005-3212-6
    Masato Y, Hiroo N, Toshihei M, et al. Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and North Americaf[J]. ISIJ International, 1998, 38(3): 285 − 290. doi: 10.2355/isijinternational.38.285
    张侠洲, 高立军, 姚仲成, 等. 合金元素对耐候熔敷金属力学及耐蚀性能的影响[J]. 焊接学报, 2019, 40(5): 154 − 160. doi: 10.12073/j.hjxb.2019400144

    Zhang Xiazhou, Gao Lijun, Yao Zhongcheng, et al. Effect of alloy element on mechanical and corrosion resistance properties of weathering steel deposited metal[J]. Transactions of the China Welding Institution, 2019, 40(5): 154 − 160. doi: 10.12073/j.hjxb.2019400144
    Horton D. Foreword: Carbohydrate research: a half century of carbohydrate science[J]. Carbohydrate Research, 2015, 403: 3 − 7. doi: 10.1016/j.carres.2014.06.016
  • Related Articles

    [1]HUANG Huizhen, ZHAO Yanan, PENG Ruyi, DUAN Yuande. Growth kinetics of intermetallic compounds formation between liquid Sn-9Zn-0.1S solders and Cu substrates interface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 23-28. DOI: 10.12073/j.hjxb.2019400149
    [2]JIN Yuhua1, GAN Ruigen1, SHAO Qingfeng1, LI Changfeng1. Growth behaviour of Al-Mg intermetallics during post weld annealing treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 68-72. DOI: 10.12073/j.hjxb.20150808001
    [3]LIU Ning, HUANG Jiankang, CHEN Manjiao, SHI Yu, CAO Rui. Growth analysis of intermetallic compounds on aluminum-steel MIG-brazing interface based on Monte Carlo method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 55-58,62.
    [4]QIU Xiliang, WANG Qian, LIN Tiesong, HE Peng, LU Fengjiao. Effect of Al18B4O33 whiskers on microstructure evolution of intermetallic compound layer and shear behavior of soldered joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 35-38.
    [5]TIAN Ye, WU Yiping, AN Bing, LONG Danfeng. Evolution of interfacial intermetallic compound in small solder joint of fine pitch flip chip during reflow[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 100-104.
    [6]QI Kai, WANG Fengjiang, LAI Zhongmin. Inhibition growth of intermetallic compounds at solder/Cu of by addition of Zn into Sn-3.5Ag[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 57-60.
    [7]ZHOU Yong, YANG GuanJun, WU Xian, LI Changjiu. Formation characteristics of Ni/Ti intermetallics through annealing of layered Ni/Ti[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (9): 41-44.
    [8]ZHOU Yong, YANG Guanjun, WANG Hongduo, LI Geng, LI Changjiu. Effect of annealing treamenton formation of intermetallic phase in cold-sprayed Ni/Ti mechanical alloying coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (8): 45-48.
    [9]ZHU Dongmei, WANG Xibao. Mcrostrueture of Fe3A1 intermetallic compound produced by plasma cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 17-19,24.
    [10]HE Peng, FENG Ji-cai, QIAN Yi-yu, ZHANG Jiu-hai. Forming Mechanism of interface intermetallic Compounds for Difusion Bonding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 53-55.

Catalog

    Article views (487) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return