Advanced Search
LIU Quanming, LONG Weimin, FU Li, ZHONG Sujuan, LI Xiupeng. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 20-24. DOI: 10.12073/j.hjxb.20200615003
Citation: LIU Quanming, LONG Weimin, FU Li, ZHONG Sujuan, LI Xiupeng. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 20-24. DOI: 10.12073/j.hjxb.20200615003

Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints

More Information
  • Received Date: June 14, 2020
  • Available Online: January 07, 2021
  • Hydrogen embrittlement of titanium alloy weldments often occur at low hydrogen concentrations. The effect of hydrogen content on tensile properties of titanium alloy welded joints and its mechanism were studied. The results show that with the increase of hydrogen content, the room temperature strength was significantly improved, the plasticity was significantly deteriorated. At 0.05 wt.% H, solid solution hydrogen had a limited effect on tissue strengthening and a slight increase in tensile strength; solid solution hydrogen reduced the "pinning" effect of solute atom on dislocation movement, yield strength decreased; solid solution hydrogen only depend on the diffusion and accumulation to cause the local micro-region hydrogen concentration to increase, which had a little effect on the plasticity. After 0.12 wt.% H, the "pinning" effect of the hydride was strengthened, the hydrogen-induced dislocation cross-slip was more difficult, and the strength at room temperature was significantly increased; the brittle hydride itself fractured, precipitated, or accelerated separation from the matrix, resulting in significant plasticity decline. When not charged with hydrogen or 0.05 wt.% H, the ductile fracture occurred in the welded joint; After 0.12 wt.% H, the brittle fracture was the main; solid solution hydrogen and the hydride had a direct effect on fracture mode transformation.
  • 张春波, 乌彦全, 朴东光, 等. TA19钛合金惯性摩擦焊接工艺[J]. 焊接学报, 2018, 39(12): 44 − 48. doi: 10.12073/j.hjxb.2018390295

    Zhang Chunbo, Wu Yanquan, Piao Dongguang, et al. TA19 titanium alloy inertia friction welding process[J]. Transactions of the China Welding Institution, 2018, 39(12): 44 − 48. doi: 10.12073/j.hjxb.2018390295
    Qi Dan, Zhu Ying, Guo Wei, et al. New Ti-Zr-Cu-Ni-La system brazing filler metals for the joining of titanium alloy[J]. China Welding, 2015, 24(2): 6 − 11.
    Li Xifeng, Chen Xin, Li Baoyong, et al. Grain refinement mechanism of Ti-55 titanium alloy by hydrogenation and dehydrogenation treatment[J]. Materials Characterization, 2019, 157: 109919. doi: 10.1016/j.matchar.2019.109919
    Panin P V, Manokhin S S, Dzunovich D A. Research on submicron-grained structure formation in titanium alloys upon reversible hydrogenation and plastic deformation[J]. Inorganic Materials Applied Research, 2018, 9(6): 1029 − 1034. doi: 10.1134/S2075113318060229
    中国国家标准化管理委员会. GB/T 2651-2008 焊接接头拉伸试验方法[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. GB/T 2651-2008 Tensile test method on welded joints[S]. Beijing: Standards Press of China, 2008.
    Liu Quanming, Zhang Zhaohui, Yang Haiying, et al. Hydride precipitation in the hydrogenated 0.12wt.%H weld zone of Ti-0.3Mo-0.8Ni alloy argon-arc-welded joints[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(9): 1902 − 1907.
    Liu Quanming, Zhang Zhaohui, Liu Shifeng, et al. The hydride precipitation mechanisms in the hydrogenated weld zone of Ti-0.3Mo-0.8Ni alloy argon-arc welded joints[J]. Advanced Engineering Materials, 2018, 20(5): 1700679. doi: 10.1002/adem.201700679
    褚武扬. 氢损伤和滞后断裂[M]. 北京: 冶金工业出版社, 1988.

    Chu Wuyang. Hydrogen damage and delayed fracture[M]. Beijing: Metallurgical Industry Press, 1988.
    苏娟华, 邵鹏, 任凤章. TA10钛合金高温流变行为及拉伸性能[J]. 材料热处理学报, 2018, 39(6): 14 − 20.

    Su Juanhua, Shao Peng, Ren Fengzhang. High temperature flow behavior and tensile properties of TA10 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2018, 39(6): 14 − 20.
    施金美. 钛合金环境氢脆的研究[D]. 上海: 上海大学, 2003.

    Shi Jinmei. Study on environmental hydrogen embrittlement of titanium alloy[D]. Shanghai: Shanghai University, 2003.
    Anand L, Mao Y, Talamini B. On modeling fracture of ferritic steels due to hydrogen embrittlement[J]. Journal of the Mechanics and Physics of Solids, 2019, 122: 280 − 314. doi: 10.1016/j.jmps.2018.09.012
    袁宝国. 置氢Ti-6Al-4V合金室温变形行为及改性机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    Yuan Baoguo. Deformation behavior and mechanism of hydrogenated Ti-6Al-4V alloy at room temperature[D]. Harbin: Harbin Institute of Technology, 2010.
  • Cited by

    Periodical cited type(7)

    1. 丁天然,杨骄,张雷,秦建,朱宏涛,井培尧. 超声辅助工艺对金刚石/AlSi复合涂层组织影响机理研究. 稀有金属材料与工程. 2025(02): 463-473 .
    2. 杨梦迪,张明玉,于成泉,岳旭,同晓乐,张亚峰. 固溶时效处理对TA10钛合金组织与力学性能的影响. 金属世界. 2024(01): 49-52 .
    3. 刘全明,肖俊峰,高斯峰,唐文书,高松,龙伟民. 置氢TA10合金焊接接头组织和高温压缩性能. 焊接学报. 2024(08): 79-84+94 . 本站查看
    4. 张亚峰,张明玉,吴静,岳旭,同晓乐,李峰丽. β相区冷却方式对TA10钛合金组织与力学性能的影响. 天津化工. 2023(02): 79-82 .
    5. 陈伟,张宇鹏,董勇,王海燕,胡永俊,巴一. 激光焊接参数对钛合金薄板组织及力学性能影响. 精密成形工程. 2022(05): 100-108 .
    6. 白明远,范金娟. TC4钛合金压紧杆断裂分析研究. 工程与试验. 2021(02): 94-97 .
    7. 裴龙基,胡志月,瞿龙,蒋淑英,张军利. TA2/Co_(13)Cr_(28)Cu_(31)Ni_(28)/Q235脉冲TIG焊接头组织与性能. 焊接学报. 2021(11): 90-96+102 . 本站查看

    Other cited types(1)

Catalog

    Article views (440) PDF downloads (29) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return