Citation: | BAI Yili, WANG Dongpo, DENG Caiyan, GONG Baoming. Effect of ultrasonic impact strength on fatigue life of welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 149-153. DOI: 10.12073/j.hjxb.2019400329 |
Sonsino C M, Muller F, Back J D, et al. Influence of stress relieving by vibration on the fatigue behavior of welded joints in comparison to post-weld heat treatment[J]. Fatigue and Fracture of Engineering Structures, 1996, 19(6):703-708.
|
饶德林, 陈立功, 倪纯珍, 等. 超声冲击对焊接结构残余应力的影响[J]. 焊接学报, 2005, 26(4):48-50
Rao Delin, Chen Ligong, Nie Chunzhen, et al. Effect of ultrasonic impact treatment on residual stress of welded structure[J]. Transactions of the China Welding Institution, 2005, 26(4):48-50 |
Malaki M, Ding H. A review of ultrasonic peening treatment[J]. Materials and Design, 2015, 87(8):1072-1086.
|
Cheng X, Fisher J W, Prask H J, et al. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures[J]. International Journal of Fatigue, 2003, 25:1259-1269.
|
Yekta R T, Ghahremani K, Walbridge S. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds[J]. International Journal of Fatigue, 2013, 55:245-256.
|
Gao Y K, Wu X R. Experimental investigation and fatigue life prediction for 7475-T7351 aluminum alloy with and without shot peening-induced residual stresses[J]. Acta Materialia, 2011, 59:3737-3747.
|
He B L, Wei K, Yu Y X, et al. Fatigue life analysis of SMA490BW steel welded butt joint for train bogie based on ABAQUS/FE-SAFE[J]. China Welding, 2016(4):5-12.
|
ⅡW Collection. ⅡW recommendations for the HFMI treatment:for improving the fatigue strength of welded joints:ISSN 2365-4368[S].France:International Institute of Welding, 2016.
|
Epprecht W. Tire track formation on fatigue fracture surfaces; mechanisms and experiments[J]. Scripta Metallurgica, 1982, 16:555-560.
|
Foehrenbach J, Hardenacke V, Farajian M. High frequency mechanical impact treatment (HFMI) for the fatigue improvement numerical and experimental investigations to describe the condition in the surface layer[J]. Welding in the World, 2016, 60:749-755.
|
1. |
武永利,杨志斌,车彦龙,康金文,孙亚鹏. 超声冲击功率对S355J2G4钢接头组织与性能的影响. 焊接技术. 2024(08): 14-17+145 .
![]() | |
2. |
何亮,贺智涛,张蕾,程彬,马晓阳,丁鹏龙. 焊趾熔修和超声冲击处理对船用钢焊接接头的影响. 电焊机. 2024(08): 96-101 .
![]() | |
3. |
马景平,曹睿,周鑫. 高强钢焊接接头疲劳寿命的提高方法进展. 焊接学报. 2024(10): 115-128 .
![]() | |
4. |
李涛,汪洋,甘进,邵永波. 超声冲击处理焊接节点疲劳性能改善及寿命预测方法研究进展. 建筑钢结构进展. 2023(06): 58-67 .
![]() | |
5. |
汪子钊,张俊,孙高辉,全顺红,刘华兵,甘进,吴卫国,汪舟. 超声冲击对厚板异种钢T型焊接接头组织与硬度的影响. 机械工程材料. 2023(11): 6-11 .
![]() | |
6. |
周南阳,何亮,程彬,杜义. 超声冲击处理改善焊接接头力学特性研究进展. 材料开发与应用. 2023(05): 94-98 .
![]() | |
7. |
王任甫,何亮,孙磊. 船体局部密集焊缝结构疲劳性能研究. 材料开发与应用. 2023(05): 31-36 .
![]() | |
8. |
那飞,龙琼,伍剑明,苏向东. 表面强化技术在焊接领域中的应用研究进展. 贵州农机化. 2022(01): 21-24 .
![]() | |
9. |
李美艳,薛喜欣,张琪,宋立新,韩彬,刘明磊. 超声冲击强化焊接接头及金属表面强化研究进展. 表面技术. 2022(06): 89-99 .
![]() | |
10. |
王振飞,杨新俊. 超声冲击处理S30408不锈钢的微观组织演变与电化学性能. 金属热处理. 2022(07): 221-226 .
![]() | |
11. |
王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响. 吉林大学学报(工学版). 2022(11): 2542-2548 .
![]() | |
12. |
邓彩艳,刘庚,龚宝明,刘永. 基于Tanaka-Mura位错模型的疲劳裂纹萌生寿命预测. 焊接学报. 2021(01): 30-37+99 .
![]() |