Advanced Search
WANG Bo, SUN Zhichao, ZHANG Hongtao, WU Baocai, HU Zhenhai. Design and analysis on the device of heat-assisted ultrasonic additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297
Citation: WANG Bo, SUN Zhichao, ZHANG Hongtao, WU Baocai, HU Zhenhai. Design and analysis on the device of heat-assisted ultrasonic additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(11): 111-118. DOI: 10.12073/j.hjxb.2019400297

Design and analysis on the device of heat-assisted ultrasonic additive manufacturing

More Information
  • Received Date: December 28, 2018
  • Ultrasonic coffin manufacturing technology was widely used in the field of function and rapid preparation of composite materials, in order to overcome the power constraints of existing ultrasonic additive manufacturing equipment, a manufacturing equipment of high power ultrasonic assisted heat increment was developed. The finite element simulation software COMSOL5.0 was used by the aided design of ultrasonic vibration system. The equipment is composed of ultrasonic vibration system, pressure mechanism, support walking mechanism and heating module, the symmetrical structure is used by the both sides of welding head, the double transducer series push-pull technology is used, the single ultrasonic welding power is greatly improved. At the same time the extra heat input is provided by the auxiliary heating module, and improve the temperature of the metal being soldered. And the ultrasonic incremental rolling welding test of multi-layer copper foil is carried out. The results show that the heat-assisted ultrasonic additive manufacturing equipment has excellent welding performance and welding quality.
  • Kim T H, Yum J, Hu S J, et al. Process robustness of single lap ultrasonic welding of thin, dissimilar materials[J]. CIRP Annals, 2011, 60(1):17-20.
    Yang J, Cao B. Investigation of resistance heat assisted ultrasonic welding of 6061 aluminum alloys to pure copper[J]. Materials & Design, 2015, 74:19-24.
    Graff K F, Short M, Norfolk M. Very high power ultrasonic additive manufacturing (VHP UAM) for advanced materials[C]//Solid Freeform Fabrication Symposium, Austin, TX. 2010. 82-89.
    赵剑峰, 马智勇, 谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(5):675-683 Zhao Jianfeng, Ma Zhiyong, Xie Deqiao, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(5):675-683
    阮世勋, 雷运青. 金属超声焊及应用[J]. 新技术新工艺, 2004(12):38-40 Ruan Shixun, Lei Yunqing. Ultrasonic metal weld and its applications[J]. New Technology & New Process, 2004(12):38-40
    朱政强, 吴宗辉, 范静辉. 超声波金属焊接的研究现状与展望[J]. 焊接技术, 2010, 39(12):1-6 Zhu Zhengqiang, Wu Zonghui, Fan Jinghui. Research status and prospect of ultrasonic metal welding[J]. Welding Technology, 2010, 39(12):1-6
    Sriraman M R, Babu S S, Short M. Bonding characteristics during very high power ultrasonic additive manufacturing of copper[J]. Scripta Materialia, 2010, 62(8):560-563.
    Balasundaram R, Patel V K, Bhole S D, et al. Effect of zinc interlayer on ultrasonic spot welded aluminum-to-copper joints[J]. Materials Science and Engineering:A, 2014, 607:277-286.
    Bakavos D, Prangnell P B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet[J]. Materials Science and Engineering:A, 2010, 527(23):6320-6334.
    Patel V K, Bhole S D, Chen D L. Microstructure and mechanical properties of dissimilar welded Mg-Al joints by ultrasonic spot welding technique[J]. Science and Technology of Welding and Joining, 2012, 17(3):202-206.
    Obielodan J, Stucker B. A fabrication methodology for dual-material engineering structures using ultrasonic additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1-4):277-284.
    Sojiphan K, Babu S S, Benatar A, et al. Effects of ultrasonic power on the hardness of aluminum 3003 H18 alloy[J]. Welding Journal, 2016, 95(6):185-193.
    张洪涛, 常青, 冯吉才, 等. 辅助加热式超声快速成型方法及装置, CN 103600166 A[P]. 2014-02-26.
  • Related Articles

    [1]LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
    [2]LU Yongxin1,2,3, LI Xiao1, JING Hongyang2,3, XU Lianyong2,3, HAN Yongdian2,3. Finite element simulation of carbon steel welded joint corrosion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 10-14. DOI: 10.12073/j.hjxb.2018390112
    [3]TIAN Peng, CHEN Zhen. Application of 3D shell element in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 99-102,112.
    [4]ZHAO Sheng, CHEN Zhen, LUO Yu. Application of high order elements in welding thermal elastic-plastic finite element analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(1): 54-58.
    [5]ZHANG Lixia, FENG Jicai. Finite element simulation of thermal stress on brazed K24 nickel-based joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 29-32.
    [6]HU Guiming, ZHOU Changyu, ZHANG Guodong, CHEN Cheng, LEI Na. Finite element simulation on the effect of welding residual stress on the metal dusting corrosion of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 42-46.
    [7]ZHU Miaofeng, LU Fenggui, CHEN Yunxia, YAO Shun. Finite element analysis on laser welding of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 97-100.
    [8]FENG Ji-cai, ZHANG Li-xia. Finite element simulation of thermal stress on the brazed TiC cermet/iron joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 9-12.
    [9]ZHANG Hong-wu, ZHANG Zhao, CHEN Jin-tao. Finite element analysis of friction stir welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 13-18.
    [10]ZHU Yuan-xiang, ZHANG Xiao-fei, Yang bing, Li xiao-mei. The Numeric Simulation of Weld Residual Stress of Several Weld-Repaired Based on Finite Element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 65-68.
  • Cited by

    Periodical cited type(8)

    1. 李运刚,任喜强,齐艳飞,吴志杰,冯汉坤,李彦泽. 铜合金化轻质钢屈服强度及氢脆性能的研究进展. 钢铁. 2024(03): 19-31 .
    2. 程旺军,崔栋栋,孙耀宁,曾月. 基于液氢储运的超低温不锈钢微观组织演变与力学性能研究进展. 太阳能学报. 2024(06): 117-124 .
    3. 刘昕,于翔麟,盖旭辉,张全厚,黎生明. 06Cr19Ni11Ti不锈钢焊接缺陷分析及改善. 阀门. 2024(06): 706-708 .
    4. 秦志辉,张晓斌,胡卫朋,岑树海,孙小兵,解洋. 在役石脑油加氢反应器裂纹失效分析及维修. 化工机械. 2023(03): 407-412 .
    5. 王宇辰,吴倩,刘欢,康泽天. 管线钢氢相容性测试方法及氢脆防控研究进展. 油气储运. 2023(11): 1251-1260 .
    6. 许未晴,鲁仰辉,孙晨,贾冠伟,李梦雅,雷鸣宇,蔡茂林,吴素君. 天然气掺氢输送系统氢脆研究进展. 油气储运. 2022(10): 1130-1140 .
    7. 周海婷,叶东东,朱晨曦,胡沁. 材料氢脆涡流评价的有限元仿真研究. 电子测量技术. 2022(21): 156-160 .
    8. 杨静,王晓霖,李遵照,董经发,冯灿. 氢气长距离管输技术现状与探讨. 压力容器. 2021(02): 80-86 .

    Other cited types(2)

Catalog

    Article views (364) PDF downloads (19) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return