Advanced Search
FAN Ding, YANG Wenyan, XIAO Lei, HUANG Jiankang. Effect of high frequency longitudinal alternating magnetic field on droplet transfer and spatter rate in high current GMAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 1-5. DOI: 10.12073/j.hjxb.2019400172
Citation: FAN Ding, YANG Wenyan, XIAO Lei, HUANG Jiankang. Effect of high frequency longitudinal alternating magnetic field on droplet transfer and spatter rate in high current GMAW welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 1-5. DOI: 10.12073/j.hjxb.2019400172

Effect of high frequency longitudinal alternating magnetic field on droplet transfer and spatter rate in high current GMAW welding

More Information
  • Received Date: September 30, 2018
  • In the process of gas shielded arc welding (GMAW), it is a direct way to increase the welding deposit rate by adopting high wire feeding speed, increasing welding current and dry elongation. However, when the droplet transfer is changed into rotating jet transfer, the arc is unstable, the spatter increases and the weld formation becomes worse. A longitudinal alternating magnetic field with different frequencies is applied to control the weld formation. The arc shape and droplet transfer during welding were photographed by high-speed video camera. The effects of magnetic field with different frequencies on droplet transfer and welding spatter rate were studied. The results show that the mechanism of spatter is different with different droplet transfer modes; when the applied frequency is 1 000 Hz longitudinal alternating magnetic field, the rotating radius of arc decreases, the stiffness of arc increases, the arc is more stable, the welding spatter rate decreases, and the weld shape is improved.
  • 朱胜,王启伟,殷凤良,等.交变纵向磁场作用下MIG焊电弧行为研究[J].材料热处理学报, 2011, 32(11):23-27 Zhu Sheng, Wang Qiwei, Yin Fengliang, et al. Research on MIG welding arc under alternating longitudinal magnetic field[J]. Transactions of Materials and Heat Treatment, 2011, 32(11):23-27
    Zhu S, Wang Q W, Yin F L, et al. Research on droplet transfer of MIG welding with alternating longitudinal magnetic field[J]. Advanced Materials Research, 2011, 189-193:993-996.
    岳建锋,李亮玉,刘文吉,等.基于外加高频交变磁场下向MAG焊熔池成形控制[J].机械工程学报, 2013, 49(8):65-70 Yue Jianfeng, Li Liangyu, Liu Wenji, et al. Downward welding pool shape control based on exterior high frequency alternative magnetic field[J]. Journal of Mechanical Engineering, 2013, 49(8):65-70
    华爱兵,殷树言,陈树君,等.纵向磁场对MAG焊电弧及熔滴过渡的控制作用[J].机械工程学报, 2010, 46(14):95-100 Hua Aibing, Yin Shuyan, Chen Shujun, et al. Behavior of arc and transfer of MAG welding controlled by longitudinal magnetic field[J]. Journal of Mechanical Engineering, 2010, 46(14):95-100
    Chang Y L, Che X P, He Y Y, et al. Influence of longitudinal magnetic field on metal transfer in MIG arc welding[J]. China Welding, 2008, 17(2):27-31.
    常云龙,李海涛,梅强,等.外加纵向磁场对CO2焊接短路液桥的影响[J].沈阳工业大学学报, 2015, 37(6):624-628 Chang Yunlong, Li Haitao, Mei Qiang, et al. Influence of external longitudinal magnetic field on short circuit liquid bridge of CO2 welding[J]. Journal of Shenyang University of Technology, 2015, 37(6):624-628
    常云龙,李多,李大用,等.纵向磁场作用下MIG焊熔滴过渡过程的分析[J].焊接学报, 2009, 30(3):21-24 Chang Yunlong, Li Duo, Li Dayong, et al. Analyses of process of MIG droplet transfer with longitudinal magnetic[J]. Transactions of the China Welding Institution, 2009, 30(3):21-24
    Nosov D G, Peremitko V V. Influence of frequency and induction of longitudinal magnetic field on the electrode metal loss and its spattering during MAG-welding[J]. IOP Conference Series:Materials Science and Engineering, 2015, 91(1):012011.
    刘民军.磁控焊接电弧行为及焊缝成形机理的研究[D].沈阳:沈阳工业大学, 2016.
    Fan C, Zhou L, Liu Z, et al. Arc character and droplet transfer of pulsed ultrasonic wave-assisted GMAW[J]. International Journal of Advanced Manufacturing Technology, 2017(1):1-8.
    武传松,高学松.焊接物理(ⅡW SG-212)研究进展-第70届国际焊接学会年会焊接物理研究组报告评述[J].焊接, 2018(1):1-11, 61 Wu Chuansong, Gao Xuesong. Advances in welding physics (ⅡWSG-212):review of the report of the research group on welding physics at the 70th annual meeting of the international welding society[J]. Welding&Joining, 2018(1):1-11, 61
    Jiang Y, Zhao Z, Li L. Numerical simulation for GMAW with a new model based on phase field model[J]. China Welding, 2018, 27(1):46-52.
    Gao X D, Wen Q, Katayama S. Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12):3748-3757.
    王好猛.熔化极气体保护焊电信号与焊接过程稳定性的相关性研究[D].济南:山东大学, 2015.
  • Related Articles

    [1]QIAN Ji, JIANG Yong, WU Chong. Analysis on welding residual stress produced by repairing cracks in the joint of longitudinal rib and deck plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 25-29. DOI: 10.12073/j.hjxb.2018390243
    [2]WAN Jin, LI Jia, LIN Shaoxiong. Numerical simulation analysis of welding residual stresses in spherical tank[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(4): 89-94.
    [3]CHEN Yongxiong, LIANG Xiubing, SHANG Junchao, XU Binshi. Analysis of FEA of residual stress for thermal sprayed coating on shaft parts[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 13-16.
    [4]YU Jiahuan, DAI Li, LI Hongshuang, LIU Qiongyang. Finite element analysis of residual stress in weld and bolt beam-column connections[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 22-26.
    [5]ZHANG Shiping, LU Hao, LIU Xilin, FANG Hongyuan. Ultrasonic monitoring of residual stress reduction methods[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (4): 77-80.
    [6]LIU Junyan, LU Hao, CHEN Junmei. Thermal-mechano-metallurgical coupled analysis of welding residual stress[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 95-98.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]DONG Jun-hui, LIN Yan, LIN Wen-guang, YAO Qing-hu. Finite element analysis on welding residual stresses of thick wall pipe of heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 25-27,36.
    [9]Cai jie, Wang Yuanliang, Chen Mingming. Measurement of residual stress in big weldment and vibraticn stress relieving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (2): 89-95.
    [10]Wang Weirong. A STUDY OF THE MEASURING METHODS OF RESIDUAL WELDING STRESSES[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1989, (3): 181-187.
  • Cited by

    Periodical cited type(4)

    1. 晏嘉陵,齐彦昌,刘明星,常子金,崔冰. 焊接热输入对P91钢焊接修复微观组织及性能的影响. 材料科学与工艺. 2024(05): 74-83 .
    2. 何兵,房元斌. 柴油发电机组底架补焊对变形和残余应力的影响. 焊接技术. 2023(11): 105-109 .
    3. 王洪广,岑升波. 焊补对转向架用耐候钢焊接接头残余应力的影响. 西部交通科技. 2021(05): 147-150 .
    4. Sanjooram Paddea,饶德林,叶晋,罗凡,张书彦. 异种金属管道焊缝的修补焊残余应力. 焊接. 2020(02): 16-19+66 .

    Other cited types(4)

Catalog

    Article views (593) PDF downloads (317) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return