Advanced Search
ZHANG Cheng, LU Qinghua, CAI Zunwu, ZHANG Peilei. Microstructure and property of laser welded joint with high frequency micro-vibration process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 86-90. DOI: 10.12073/j.hjxb.2019400048
Citation: ZHANG Cheng, LU Qinghua, CAI Zunwu, ZHANG Peilei. Microstructure and property of laser welded joint with high frequency micro-vibration process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 86-90. DOI: 10.12073/j.hjxb.2019400048

Microstructure and property of laser welded joint with high frequency micro-vibration process

More Information
  • Received Date: November 10, 2017
  • Based on high frequency micro-vibration platform, the 316L stainless steel was welded by laser welding with vibration. The microstructure and property of laser welded joint with high frequency micro-vibration process had been investigated. The results indicate that good welding surface could be got under vibration. No spatters could be found. No collapse and excess weld metal existed. Weld width form uniformly in the back weld. Grain refinement is related to resonant vibration frequency during solidification in the weld. The smallest grain size and the most conspicuous grain refinement were obtained at the resonant frequency of 1 467.5 Hz. In addition, the particles spreaded and dispersed between the austenite grains. The new phase and the large particles were reduced with vibration. With the increase of the vibration frequency, weld microhardness increased, especially with the higher resonance frequency. At the resonant frequency of 1 467.5 Hz, vibration acceleration of 160 m/s2, the average microhardness value of weld is 206 HV, which was increased by 5.6% compared with that with no vibration condition.
  • Lu Qinghua, Chen Ligong, Ni Chunzhen, et al. The application of vibration welding condition in large welding structure[J]. Transaction of the China Welding Institution, 2007, 28(2): 92 − 95
    Lu Q H, Chen L G, Ni C Z, et al. Improving welded valve quality by vibratory weld conditioning[J]. Materials Science and Engineering A, 2007, 457(1): 246 − 253.
    Zeng Qinglin, Zhang Lihua, Xu Jijin, et al. Application of vibra-tory welding technology in project[J]. Mechanical Research & Application, 2009, 4(4): 75 − 77
    Lu Q H, Chen L G, Ni C Z, et al. Effect of vibratory weld conditioning on welded valve properties[J]. Mechanics of Materials, 2008, 40(7): 565 − 574.
    卢庆华, 陈立功, 倪纯珍, 等. 振动焊接技术在大型焊接构件中的应用[J]. 焊接学报, 2007, 28(2): 92 − 95
    He Xiaofeng, Lu Qinghua, Peng Birong, et al. Laser welding of stainless steel at high frequency vibration[J]. Transaction of the China Welding Institution, 2016, 37(9): 70 − 74
    Peng Birong, Lu Qinghua, He Xiaofeng, et al. Effect of mechanical vibration on microstructure of laser welding joints[J]. Journal of Mechanical Engineering, 2015, 51(20): 94 − 100
    Govindarao P, Srinivasarao P, Gopalakrishna A, et al. Improvement of tensile strength of butt welded joints prepared by vibratory process[J]. International Journal of Mechanical Engineering and Technology(IJMET), 2013, 4(4): 53 − 61.
    Govindarao P, Srinivasarao P, Gopalakrishna A, et al. Effect of vibratory process to improve the mechanical properties of butt welded joints[J]. International Journal of Modern Engineering Research, 2012, 2(4): 2766 − 2770.
    Wen T, Liu S Y, Chen S, et al. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 397 − 404.
    Zeidabadi H, Mirdamadi S. Effect of vibration during GTAW welding on microstructure and mechanical properties of Ti6Al4V[J]. Russian Journal of Non-Ferrous Metals, 2015, 56(2): 217 − 221.
    曾庆林, 张立华, 徐济进, 等. 振动焊接技术在工程中的应用[J]. 机械研究与应用, 2009, 4(4): 75 − 77
    何晓峰, 卢庆华, 彭必荣, 等. 高频振动下的不锈钢激光焊接[J]. 焊接学报, 2016, 37(9): 70 − 74
    胡 正. 应用于振动焊接的微振动平台的研制[D]. 杭州: 浙江大学, 2006.
    Kim J, Oh S, Ki H. Effect of keyhole geometry and dynamics in zero-gap laser welding of zinc-coated steel sheets[J]. Journal of Materials Processing Technology, 2016, 232: 131 − 141.
    Zhang L J, Zhang J X, Gumenyuk A, et al. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser[J]. Journal of Materials Processing Technology, 2014, 214(8): 1710 − 1720.
    彭必荣, 卢庆华, 何晓峰, 等. 机械振动对激光焊接接头组织的影响[J]. 机械工程学报, 2015, 51(20): 94 − 100
    Ray C S, Fang X, Day D E, et al. New method for determining the nucleation and crystal-growth rates in glasses[J]. Journal of the American Ceramic Society, 2010, 83(4): 865 − 872.
    Rao P G, Rao P S, Krishna A G, et al. Mechanical properties improvement of weldments using vibratory welding system[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2014, 229(5): 776 − 784.
  • Related Articles

    [1]ZHANG Chunbo, LIANG Wu, ZHOU Jun, WU Yanquan, ZHANG Youzhao, LI Xiangwei. Effect of heat treatment on microstructure and microhardness of FGH96 inertia friction welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 57-62. DOI: 10.12073/j.hjxb.20230220002
    [2]YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
    [3]YIN Yan, PAN Cunliang, ZHAO Chao, ZHANG Ruihua, QU Yuebo. Formation mechanism of microstructure of laser cladding high chromium Fe-based alloy and its effect on microhardness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 114-120. DOI: 10.12073/j.hjxb.2019400192
    [4]CHANG Chuanchuan, ZHANG Tiancang, LI Ju. Study on microstructure and microhardness of linear friction welded joints of Ti-22Al-27Nb alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 140-144. DOI: 10.12073/j.hjxb.2019400087
    [5]CAI Zunwu, LU Qinghua, ZHANG Cheng, ZHANG Wei. Porosity and microstructure characteristic of 1060Al laser welded joint under high frequency micro-vibration condition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 53-58. DOI: 10.12073/j.hjxb.2019400011
    [6]YANG Shuo, CHANG Baohua, XING Bin, DU Dong. Influences of forced cooling on the microstructure and microhardness in laser metal deposition of IC10 super alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 31-35. DOI: 10.12073/j.hjxb.2018390063
    [7]YIN Yan, LI Zilin, XU Guangwei, ZHANG Ruihua, QU Yuebo. Microhardness and microstructure of laser cladding layer on 3Cr13 kitchen knife by disc laser coaxial powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 85-88.
    [8]QI Yongai, ZHAO Jianfeng, XIE Deqiao, LI Yue. Fining grain of FGH95 nickel-based superalloy laser cladding layer by ultrasonic impact treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(3): 59-62.
    [9]QIN Chun, YAO Zekun, ZHOU Wei, GUO Hongzhen, CAO Jingxia. Effect of thermal exposure on microhardness and element distribution in welding interface of Ti-24Al-15Nb-1.5Mo/TC11 dual alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 33-36.
    [10]ZHANG Chuanchen, HUANG Jihua, ZHANG Tiancang, JI Yajuan. Investigation on microstructure and microhardness of linear friction welded joints of dissimilar titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 97-100.
  • Cited by

    Periodical cited type(5)

    1. 黄志超,肖锐,刘帅红,周泽杰,赖家美. 预加热对TA1钛合金自冲铆接性能的影响. 锻压技术. 2020(06): 80-85 .
    2. 黄志超,宋天赐,赖家美. TA1钛合金自冲铆接接头疲劳性能及失效机理分析. 焊接学报. 2019(03): 41-46+162-163 . 本站查看
    3. 刘可欣,何晓聪,曾凯,张杰. 复合连接方式对AA5052铝合金板材接头性能的影响. 有色金属工程. 2019(06): 1-5 .
    4. 张先炼,何晓聪,曾凯. 铆钉对TA1与1420自冲铆接工艺及失效行为的影响. 焊接学报. 2019(07): 37-43+162-163 . 本站查看
    5. 聂文忠,陈晓东,李欧洋. 飞行汽车轻量化板材自冲铆接工艺参数优化. 兵器材料科学与工程. 2019(06): 75-78 .

    Other cited types(5)

Catalog

    Article views (144) PDF downloads (10) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return