Advanced Search
ZHANG Cheng, LU Qinghua, CAI Zunwu, ZHANG Peilei. Microstructure and property of laser welded joint with high frequency micro-vibration process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 86-90. DOI: 10.12073/j.hjxb.2019400048
Citation: ZHANG Cheng, LU Qinghua, CAI Zunwu, ZHANG Peilei. Microstructure and property of laser welded joint with high frequency micro-vibration process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 86-90. DOI: 10.12073/j.hjxb.2019400048

Microstructure and property of laser welded joint with high frequency micro-vibration process

More Information
  • Received Date: November 10, 2017
  • Based on high frequency micro-vibration platform, the 316L stainless steel was welded by laser welding with vibration. The microstructure and property of laser welded joint with high frequency micro-vibration process had been investigated. The results indicate that good welding surface could be got under vibration. No spatters could be found. No collapse and excess weld metal existed. Weld width form uniformly in the back weld. Grain refinement is related to resonant vibration frequency during solidification in the weld. The smallest grain size and the most conspicuous grain refinement were obtained at the resonant frequency of 1 467.5 Hz. In addition, the particles spreaded and dispersed between the austenite grains. The new phase and the large particles were reduced with vibration. With the increase of the vibration frequency, weld microhardness increased, especially with the higher resonance frequency. At the resonant frequency of 1 467.5 Hz, vibration acceleration of 160 m/s2, the average microhardness value of weld is 206 HV, which was increased by 5.6% compared with that with no vibration condition.
  • Lu Qinghua, Chen Ligong, Ni Chunzhen, et al. The application of vibration welding condition in large welding structure[J]. Transaction of the China Welding Institution, 2007, 28(2): 92 − 95
    Lu Q H, Chen L G, Ni C Z, et al. Improving welded valve quality by vibratory weld conditioning[J]. Materials Science and Engineering A, 2007, 457(1): 246 − 253.
    Zeng Qinglin, Zhang Lihua, Xu Jijin, et al. Application of vibra-tory welding technology in project[J]. Mechanical Research & Application, 2009, 4(4): 75 − 77
    Lu Q H, Chen L G, Ni C Z, et al. Effect of vibratory weld conditioning on welded valve properties[J]. Mechanics of Materials, 2008, 40(7): 565 − 574.
    卢庆华, 陈立功, 倪纯珍, 等. 振动焊接技术在大型焊接构件中的应用[J]. 焊接学报, 2007, 28(2): 92 − 95
    He Xiaofeng, Lu Qinghua, Peng Birong, et al. Laser welding of stainless steel at high frequency vibration[J]. Transaction of the China Welding Institution, 2016, 37(9): 70 − 74
    Peng Birong, Lu Qinghua, He Xiaofeng, et al. Effect of mechanical vibration on microstructure of laser welding joints[J]. Journal of Mechanical Engineering, 2015, 51(20): 94 − 100
    Govindarao P, Srinivasarao P, Gopalakrishna A, et al. Improvement of tensile strength of butt welded joints prepared by vibratory process[J]. International Journal of Mechanical Engineering and Technology(IJMET), 2013, 4(4): 53 − 61.
    Govindarao P, Srinivasarao P, Gopalakrishna A, et al. Effect of vibratory process to improve the mechanical properties of butt welded joints[J]. International Journal of Modern Engineering Research, 2012, 2(4): 2766 − 2770.
    Wen T, Liu S Y, Chen S, et al. Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 397 − 404.
    Zeidabadi H, Mirdamadi S. Effect of vibration during GTAW welding on microstructure and mechanical properties of Ti6Al4V[J]. Russian Journal of Non-Ferrous Metals, 2015, 56(2): 217 − 221.
    曾庆林, 张立华, 徐济进, 等. 振动焊接技术在工程中的应用[J]. 机械研究与应用, 2009, 4(4): 75 − 77
    何晓峰, 卢庆华, 彭必荣, 等. 高频振动下的不锈钢激光焊接[J]. 焊接学报, 2016, 37(9): 70 − 74
    胡 正. 应用于振动焊接的微振动平台的研制[D]. 杭州: 浙江大学, 2006.
    Kim J, Oh S, Ki H. Effect of keyhole geometry and dynamics in zero-gap laser welding of zinc-coated steel sheets[J]. Journal of Materials Processing Technology, 2016, 232: 131 − 141.
    Zhang L J, Zhang J X, Gumenyuk A, et al. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser[J]. Journal of Materials Processing Technology, 2014, 214(8): 1710 − 1720.
    彭必荣, 卢庆华, 何晓峰, 等. 机械振动对激光焊接接头组织的影响[J]. 机械工程学报, 2015, 51(20): 94 − 100
    Ray C S, Fang X, Day D E, et al. New method for determining the nucleation and crystal-growth rates in glasses[J]. Journal of the American Ceramic Society, 2010, 83(4): 865 − 872.
    Rao P G, Rao P S, Krishna A G, et al. Mechanical properties improvement of weldments using vibratory welding system[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2014, 229(5): 776 − 784.
  • Related Articles

    [1]Mingdong ZHU, Bingjie WU, Liyan CAO, Yanru LI, Runhao ZHANG, Jiayue WU. Microstructure and property of cobalt alloy by laser cladding on 304LN stainless steel surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 48-53, 86. DOI: 10.12073/j.hjxb.20220508001
    [2]YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
    [3]YANG Shuo, CHANG Baohua, XING Bin, DU Dong. Influences of forced cooling on the microstructure and microhardness in laser metal deposition of IC10 super alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 31-35. DOI: 10.12073/j.hjxb.2018390063
    [4]YIN Yan, LI Zilin, XU Guangwei, ZHANG Ruihua, QU Yuebo. Microhardness and microstructure of laser cladding layer on 3Cr13 kitchen knife by disc laser coaxial powder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 85-88.
    [5]QIAO Hong, LI Qingtang, FU Hanguang, LEI Yongping. Microstructure and properties of in-situ synthesized ceramic phase reinforced Fe-based coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(1): 67-69.
    [6]NIE Binying, YAO Chengwu. Effect of alloy elements on microstructure and phase structure of laser cladding Fe-based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 85-88.
    [7]WU Yang, YU Gang, HE Xiuli, NING Weijian. Microstructure and properties of Fe-W composite coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 37-40,44.
    [8]LU Jinbin, ZHANG Zhaojun, NING Jiuchao, LIU Hongtao. Microstructure analysis on composite coating of Fe-based alloy added WC by plasma cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 65-68.
    [9]PENG Zhuqin, SHANG Quanyi, LU Jinbin, WU Yuping. Wear-resistant coating of Fe-based alloy by plasma cladding on cast iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 61-64.
    [10]LI Ming-xi, ZHANG Shi-hong, LI Hui-sheng, HE Yi-zhu. Laser claded Ni-based alloy coatings reinforced by nano-Sm2O3 particles[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 5-8.
  • Cited by

    Periodical cited type(15)

    1. 曹新娜,宋路阳,黄玲玲,江涛,张浩强,汪瑞军,于华,詹华,尹丹青,鲍曼雨,龙伟民,钟素娟,纠永涛. 60Si2Mn钢表面激光熔覆铁基涂层的组织及耐磨性研究. 表面技术. 2024(07): 164-170 .
    2. 郭亿,王金凤,苏文超,车亚军,蔡笑宇,柯浩,李文娟. 电弧熔覆韧-硬复合层工艺及性能研究. 精密成形工程. 2024(06): 107-114 .
    3. 吴鹏飞,魏昕,苏建修. 碳化钨对Fe基合金激光熔覆层性能的影响. 热加工工艺. 2024(14): 11-15 .
    4. 宗琳,徐俊尧,王学钊,周建,杨洋,王明. 等离子弧堆焊高铬铁基合金的组织形成机制及对显微硬度的影响. 焊接技术. 2023(01): 17-21+113 .
    5. 黄江,朱志凯,李凯玥,师文庆,吴香林,谢玉萍. 304不锈钢表面激光熔覆铁基复合涂层的组织与性能研究. 应用激光. 2023(06): 29-35 .
    6. 张志彬,舒凤远,王慧鹏,朱鹏华. 不同B含量下钴基合金激光熔覆层组织与性能特征. 锻压技术. 2022(09): 218-223 .
    7. 王永霞,丁国华,梁莉蒙. 送粉速率对铁基合金激光熔覆层组织形貌的影响. 应用激光. 2022(12): 38-44 .
    8. 王聪,毛从强,王冬春,贾丽荣,栾程群,隋江雷. 激光熔覆Fe-Cr-Co-W合金系熔覆层硬质相的微观形貌与摩擦行为. 焊接. 2022(11): 29-34 .
    9. 胡登文,刘艳,陈辉,王梦超. Q960E钢激光熔覆Ni基WC涂层组织及性能. 中国激光. 2021(06): 239-245 .
    10. 柯庆镝,姜丰,张鹏,田常俊,秦小州. 基于修复涂层力学性能影响规律的再制造毛坯表面污染物状态评估. 中国机械工程. 2021(19): 2340-2347+2356 .
    11. 刘涛,田芳,唐秋逸. 激光熔覆大厚度铁基非晶合金的电化学腐蚀特性研究. 绿色环保建材. 2020(02): 26-27 .
    12. 秦建,龙伟民,路全彬,李胜男,黄俊兰. 金刚石/NiCrBSi钎涂接头组织与耐磨性能分析. 材料导报. 2020(S2): 1457-1461 .
    13. 姚志超,李正秋,高向宙,马春春. 基于热力学计算的矿井支架用FeNiCrBC系激光熔覆层成分优化. 焊接. 2020(11): 11-16+36+61-62 .
    14. 张金深,李辉,武爱兵. 煤化工设备耐磨层堆焊材料及工艺. 机械制造文摘(焊接分册). 2020(06): 13-18 .
    15. 秦建,黄俊兰,龙伟民,于德庆,吴铭方,王裕昌. Evolution behavior of phase and performance in Ni-based coating layer based on high temperature thermal field. China Welding. 2020(04): 25-32 .

    Other cited types(2)

Catalog

    Article views (144) PDF downloads (10) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return