Advanced Search
Mingdong ZHU, Bingjie WU, Liyan CAO, Yanru LI, Runhao ZHANG, Jiayue WU. Microstructure and property of cobalt alloy by laser cladding on 304LN stainless steel surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 48-53, 86. DOI: 10.12073/j.hjxb.20220508001
Citation: Mingdong ZHU, Bingjie WU, Liyan CAO, Yanru LI, Runhao ZHANG, Jiayue WU. Microstructure and property of cobalt alloy by laser cladding on 304LN stainless steel surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 48-53, 86. DOI: 10.12073/j.hjxb.20220508001

Microstructure and property of cobalt alloy by laser cladding on 304LN stainless steel surface

More Information
  • Received Date: May 07, 2022
  • Available Online: July 22, 2022
  • In order to improve the wear resistance of 304LN stainless steel and prolong the service life of the control rod guide cylinder assembly, a Stellite6 cobalt-based layer was prepared on the surface of 304LN stainless steel by laser cladding technology. The microstructure, composition, microhardness, friction and wear resistance and corrosion behavior of the cladding layer were analyzed by optical microscope (OM), energy dispersive spectrometer (EDS), microhardness tester, friction and wear tester, corrosion test device and other test equipment. The processing parameters of the multi-layer cobalt-based cladding layer were determined. A metallurgical bond is formed between the cladding layer and the matrix, and the microstructure is mainly composed of planar crystal regions, cellular and columnar crystal regions, dendrite regions and equiaxed crystal regions. The hardness of the cladding layer is 500 ~ 550 HV, the friction and wear coefficient is 0.3 ~ 0.35, and the uniform corrosion rate and crevice corrosion rate of the cladding layer are 0.153 mg/(dm2·d) and 0.143 mg/(dm2·d) respectively. Laser cladding cobalt base alloy can effectively improve the hardness, wear resistance and corrosion resistance of 304LN stainless steel surface.
  • Rima D, Soumitro T, Sivaprasad S. Influence of phase transformation due to temperature on cyclic plastic deformation in 304LN stainless steel[J]. International Journal of Fatigue, 2016, 90: 148 − 157. doi: 10.1016/j.ijfatigue.2016.04.030
    王庆田, 于天达, 何培峰, 等. 激光增材制造技术在核电堆内构件304LN不锈钢大型复杂结构件上的应用[J]. 中国核电, 2020, 5: 625 − 629.

    Wang Qingtian, Yu Tianda, He Peifeng, et al. Application of nuclear-grade 304LN stainless steel components prepared by laser additive manufacturing[J]. China Nuclear Power, 2020, 5: 625 − 629.
    蒋兴钧, 李娜, 罗英, 等. AP1000反应堆控制棒导向筒组件焊接变形控制[J]. 焊接, 2016(1): 51 − 53. doi: 10.3969/j.issn.1001-1382.2016.01.012

    Jiang Xingjun, Li Na, Luo Ying, et al. Control of welding deformation of control rod guide tube assembly for AP1000 nuclear reactor[J]. Welding & Joining, 2016(1): 51 − 53. doi: 10.3969/j.issn.1001-1382.2016.01.012
    Williamson E H, Gee M, Robertson D, et al. A comparative study of the wear performance of hard coatings for nuclear applications[J]. Wear, 2022, 488-489: 204124. doi: 10.1016/j.wear.2021.204124
    刘晓强, 孟凡江, 丁宗华, 等. 核电堆内构件紧固件镀铬工艺研究[J]. 电镀与涂饰, 2021, 21: 1615 − 1618. doi: 10.19289/j.1004-227x.2021.21.003

    Liu Xiaoqiang, Meng Fanjiang, Ding Zonghua, et al. Study on chromium electroplating process for fasteners of nuclear reactor internals[J]. Electroplating & Finishing, 2021, 21: 1615 − 1618. doi: 10.19289/j.1004-227x.2021.21.003
    Yi B W, Shu S Z, Wen Y G, et al. Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content[J]. Journal of Materials Processing Technology, 2014, 214: 899 − 905. doi: 10.1016/j.jmatprotec.2013.12.009
    徐国建, 李春光, 郭云强, 等. 激光熔覆Stellite-6 + VC混合粉末的熔覆层组织[J]. 焊接学报, 2017, 38(6): 73 − 78.

    Xu Guojian, Li Chunguang, Guo Yunqiang, et al. Organization of clad layer using mixed powder of stellite 6 and VC[J]. Transactions of the China Welding Institution, 2017, 38(6): 73 − 78.
    Anish N, Adam K M. Studies on effect of laser processed stellite 6 material and its electrochemical behavior[J]. Optik, 2020, 220: 165221. doi: 10.1016/j.ijleo.2020.165221
    员霄, 王井, 朱青海, 等. H13钢的铁基和钴基熔覆层组织与耐磨性[J]. 焊接学报, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307

    Yun Xiao, Wang Jing, Zhu Qinghai, et al. Microstructure and abrasion resistance of Fe-based and Co-based coatings of AISI H13[J]. Transactions of the China Welding Institution, 2018, 39(12): 105 − 109. doi: 10.12073/j.hjxb.2018390307
    尹燕, 李志慧, 李辉, 等. 铸轧辊套表面超高速激光熔覆钴基熔覆层高温耐磨性能[J]. 焊接学报, 2021, 42(9): 81 − 89. doi: 10.12073/j.hjxb.20210122001

    Yin Yan, Li Zhihui, Li Hui, et al. High-temperature wear resistance of Co-based cladding layers by ultra-high speed laser cladding on the surface of the cast-rolling roller sleeve[J]. Transactions of the China Welding Institution, 2021, 42(9): 81 − 89. doi: 10.12073/j.hjxb.20210122001
    任超, 李铸国, 疏达, 等. 17-4PH不锈钢表面激光熔覆Stellite 6涂层组织及耐水蚀性能[J]. 中国激光, 2017, 44(4): 0402010. doi: 10.3788/CJL201744.0402010

    Ren Chao, Li Zhuguo, Su Da, et al. Microstructure and water erosion resistance property of Stellite 6 coating by laser cladding on 17-4PH stainless steel surface[J]. Chinese Journal of Lasers, 2017, 44(4): 0402010. doi: 10.3788/CJL201744.0402010
    张彦超, 韦朋余, 朱强, 等. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 08121 − 08126. doi: 10.11896/cldb.20010039

    Zhang Yanchao, Wei Pengyu, Zhu Qiang, et al. Microstructure and Pb-Bi erosion resistance property of Stellite6 coating by laser cladding on 316L stainless steel surface[J]. Materials Reports, 2021, 35(8): 08121 − 08126. doi: 10.11896/cldb.20010039
    张春华, 刘杰, 吴臣亮, 等. 316L不锈钢表面激光熔覆钴基合金组织及锌蚀机理[J]. 焊接学报, 2015, 36(1): 19 − 22.

    Zhang Chunhua, Liu Jie, Wu Chenliang, et al. Microstructue and zinc corrosion mechanism of laser cladding Co-based alloy on 316L stainless steel[J]. Transactions of the China Welding Institution, 2015, 36(1): 19 − 22.
    Navas C, Conde A, Cadenas M, et al. Tribological properties of laser clad Stellite 6 coatings on steel substrates[J]. Surface Engineering, 2006, 22(1): 26 − 34. doi: 10.1179/174329406X84949
  • Related Articles

    [1]SUN Jiahao, ZHANG Chaoyong, WU Jianzhao, ZHANG Shuaikun, ZHU Lei. Prediction of weld profile of 316L stainless steel based on generalized regression neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 40-47. DOI: 10.12073/j.hjxb.20210526003
    [2]LI Xiangwei, FANG Ji, ZHAO Shangchao. Master S-N curve fitting method of welded structure and software development[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 80-85. DOI: 10.12073/j.hjxb.20191018001
    [3]ZOU Yuanyuan, ZUO Kezhu, FANG Lingshen, LI Pengfei. Recognition of weld seam for tailored blank laser welding based on least square support vector machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 77-81. DOI: 10.12073/j.hjxb.2019400046
    [4]XUE Jiaxiang, JIANG Chengfeng, ZHANG Xiaoli, ZHU Xiaojun, ZHU Qiang. Research on unified adjustment of pulsed MIG welding parameters based on least squares method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 75-78.
    [5]LIN Naichang, YANG Xiaoxiang, LIN Wen-jian, ZHU Zhibin. Defect detection of TOFD D scanning image based on parabola Htting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(6): 105-108.
    [6]ZHU Xiaopeng, ZHANG Ke, TU Zhiqiang, HUANG Jie. Calibration of relative position and orientation between robot and positioner based on spheres fitting method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 41-44.
    [7]QIN Tao, ZHANG Ke, DENG Jingyu, JIN Xin. Algorithm of extracting feature lines in welding seam image based on improved least-square method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (2): 33-36.
    [8]ZHANG Ke, WU Yixiong, LV Xueqin, JIN Xin. Real-time identification of heading angle based on least squares estimator for welding mobile robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 13-16.
    [9]LI Ruihua, MENG Guoxiang, GONG Liang, ZHANG Ke. Partial least square approach for multi-parameter assessment of resistance spot welding quality[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (3): 49-52.
    [10]CAI Yan, YANG Hai-lan, XU Xin, WU Yi-xiong. Spatter model of CO2 arc welding based on partial least-square regression method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 125-128.

Catalog

    Article views (266) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return