Advanced Search
ZHANG Zhifen, YANG Zhe, REN Wenjing, WEN Guangrui. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 19-25. DOI: 10.12073/j.hjxb.2019400005
Citation: ZHANG Zhifen, YANG Zhe, REN Wenjing, WEN Guangrui. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 19-25. DOI: 10.12073/j.hjxb.2019400005

Condition detection in Al alloy welding process based on deep mining of arc spectrum

More Information
  • Received Date: June 03, 2018
  • Condition detection during the welding process of aluminum alloy is of great significance both for guaranteeing the quality stability of aerospace structure and promoting the robotic intelligent welding manufacturing (IWM). The following research was carried out considering being lack of the effective knowledge mining method of arc spectrum and the unclear correlation between arc spectrum and weld defects. The sensitivity position interval of spectrum probe was experimentally determined to ensure the reliability of the collected spectrum information. By means of principle component analysis of metal spectrum, FeI(407.84 nm), MgI(383.83 nm) and AlI(369.15 nm) were selected, and their correlation to wire feeding state was qualitatively and quantitatively evaluated. Subsequently, based on the feature of principle component coefficients of the metal spectral line, the dynamic response rules of different metal elements were analyzed, and then, the strong correlation was found between FeI spectral line and the wire feeding state. Status detection of wire feeding was performed based on the proposed feature of FeI line spectrum. After repeat verification through different welding tests, the results showed that the method had high stability and strong anti-interference ability.
  • 吴 林, 陈善本. 智能化焊接技术[M]. 北京: 国防工业出版, 2000.
    Xu Y, Yu H, Zhong J, et al. Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor[J]. Journal of Materials Processing Technology, 2012, 212(8): 1654 ? 1662.
    Zhang Y M. Modeling of human welder response to 3D weld pool surface[J]. Welding Journal, 2012, 91(11): s310 ? s318.
    Lü N, Xu Y, Li S, et al. Automated control of welding penetration based on audio sensing technology[J]. Journal of Materials Processing Technology, 2017, 250(12): 81 ? 98.
    马跃洲, 陈剑虹, 梁卫东. GMAW电弧声的参数化模型及应用[J]. 机械工程学报, 2005, 41(11): 109 ? 114
    Ma Yuezhou, Chen Jianhong, Liang Weidong. Parametric modeling of the arc sound in GMAW for on-line quality monitoring[J]. Journal of Mechanical Engineering, 2005, 41(11): 109 ? 114
    高向东, 吴嘉杰. 微间隙焊缝磁光成像检测及跟踪方法[J]. 机械工程学报, 2015, 51(4): 71 ? 77
    Gao Xiangdong, Wu Jiajie. Approach of detecting and tracking micro weld joint based on magneto optiacl imaging[J]. Journal of Mechanical Engineering, 2015, 51(4): 71 ? 77
    Pan Q, Mizutani M, Kawahito Y, et al. High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates[J]. Journal of Laser Applications, 2016, 28(1): 012004.
    Zhao C, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific Reports, 2017, 7(1): 3602.
    Mirapeix J, Vila E, Valdiande J J, et al. Real-time detection of the aluminium contribution during laser welding of Usibor1500 tailor-welded blanks[J]. Journal of Materials Processing Teachnology, 2016, 235: 106 ? 113.
    李俊岳, 宋永伦, 李 桓, 等. 焊接电弧光谱信息的基本理论和基本方法[J]. 焊接学报, 2002, 23(6): 5 ? 8
    Li Junyue, Song Yonglun, Li Huan, et al. Basic Theory and Method of Welding Arc Spectrum Information[J]. Transactions of the China Welding Institution, 2002, 23(6): 5 ? 8
    陈 波. 脉冲GTAW过程多传感器信息融合处理方法研究[D]. 上海:上海交通大学, 2010.
    Zhang Z, Chen H, Xu Y, et al. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding[J]. Mechanical Systems & Signal Processing, 2015, 60-61: 151 ? 165.
    宋永伦. 焊接电弧等离子体的光谱诊断法及其应用的研究[D]. 天津: 天津大学, 1990.
    肖 笑. 双组分气体TIG焊电弧物理特性的动态光谱诊断方法研究[D]. 上海:上海交通大学, 2015.
    余焕伟. 基于电弧光谱信息的铝合金脉冲GTAW焊接动态过程及缺陷特征研究[D]. 上海:上海交通大学, 2013.
    Tanaka M, Tsujimura M Y, Yamazaki M K. Dynamic behaviour of metal vapour in ARC plasma during TIG welding[J]. Welding in the World, 2012, 56(1-2): 30 ? 36.
    Mazumder J, Song L. Smart additive manufacturing system (SAMS),USA, 9981341[P]. 2018-05-29.
    Song L, Huang W, Han X, et al. Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 633 ? 642.
    Zhang Z, Yu H, Lü N, et al. Real-time defect detection in pulsed GTAW of Al alloys through on-line spectroscopy[J]. Journal of Materials Processing Technology, 2013, 213(7): 1146 ? 1156.
    Huang Y, Wu D, Zhang Z, et al. EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM[J]. Journal of Materials Processing Technology, 2017, 239: 92 ? 102.
  • Cited by

    Periodical cited type(9)

    1. 白子键,李治文,张志芬,秦锐,张帅,徐耀文,温广瑞. 基于电弧光谱的核电堵管TIG焊接质量在线监测. 焊接学报. 2024(05): 8-19 . 本站查看
    2. 肖笑,王雪晴,张弛,葛学元,李芳. 基于ReliefF算法的钛合金电弧增材沉积层尺寸与光谱特性的相关性分析. 光谱学与光谱分析. 2024(07): 2002-2010 .
    3. 董向成,晏丽琴. 氩光谱诊断TIG焊电弧等离子体温度方法研究. 甘肃高师学报. 2023(05): 6-9 .
    4. 董向成,晏丽琴. 光谱法诊断TIG焊焊接电弧温度实验研究. 黑河学院学报. 2023(12): 182-184 .
    5. 陈艳菲,彭洪晟,王俊涛,王洪伟. 基于MobileNet卷积神经网络的焊缝缺陷识别. 自动化与仪表. 2022(01): 49-54 .
    6. 董向成,王国伟,陈建宏. 闪电等离子体连续光谱轮廓形成机理研究(英文). 中国光学. 2021(05): 1243-1250 .
    7. 付娟,赵勇,邹家生,贾占君,贺宇翔. 铝合金非熔化极直流正接氦弧焊氧化膜撕裂机理. 焊接学报. 2021(12): 87-90+102 . 本站查看
    8. 樊丁,胡桉得,黄健康,徐振亚,徐旭. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法. 焊接学报. 2020(01): 7-11+97 . 本站查看
    9. 刘丹,罗震,敖三三,刘云鸾. 国际焊接技术发展新趋势——第24届北京·埃森焊接与切割展览会焊接国际论坛综述(下). 焊接技术. 2020(10): 1-4 .

    Other cited types(5)

Catalog

    Article views (821) PDF downloads (11) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return