Citation: | LIU Lixiang, BAI Xiangwang, ZHOU Xiangman, ZHANG Haiou. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001 |
韩文涛, 林健, 雷永平, 等. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47 − 52.
Han Wentao, Lin Jian, Lei Yongping, et al. Thermodynamic behavior of 2Cr13 thin-walled parts manufactured by arc additive under different residence time[J]. Transactions of the China Welding Institution, 2019, 40(12): 47 − 52.
|
Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(4): 1683 − 1695.
|
Ding D, Shen C, Pan Z, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-aided Design, 2016(73): 66 − 75.
|
Cao Y, Zhu S, Liang X, et al. Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process[J]. Robotics & Computer Integrated Manufacturing, 2011, 27(3): 641 − 645.
|
Suryakumar S, Karunakaran K P, Bernard A, et al. Weld bead modeling and process optimization in hybrid layered manufacturing[J]. Computer-Aided Design, 2011, 43(4): 331 − 344. doi: 10.1016/j.cad.2011.01.006
|
Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 417 − 423. doi: 10.1016/j.rcim.2012.09.011
|
Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics & Computer Integrated Manufacturing, 2015, 31(C): 101 − 110.
|
闫峘宇, 刘文洁, 李新宇, 等. 电弧增材制造焊缝建模及尺寸规律研究[J]. 热加工工艺, 2018, 47(5): 177 − 181.
Yan Huanyu, Liu Wenjie, Li Xinyu, et al. Study on weld modeling and dimension rules of wire and arc additive manufacturing[J]. Hot Working Technology, 2018, 47(5): 177 − 181.
|
Hu Z, Qin X, Li Y, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing[J]. Journal of Intelligent Manufacturing, 2019: 1-15.doi: 10.1007/s10845-019-01501-z.
|
Xiong J, Zhang G, Qiu Z, et al. Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing[J]. Journal of Cleaner Production, 2013, 41(1): 82 − 88.
|
Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085
|
[1] | HUANG Gang, ZHANG Qingdong, WANG Chunhai, ZHANG Boyang, KONG Ning. Experimental research on the blind hole-drilling method for measuring residual stress of steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 49-59, 80. DOI: 10.12073/j.hjxb.20200403002 |
[2] | FU Wei, FANG Hongyuan, BAI Xinbo, CHEN Guoxi. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 29-33. DOI: 10.12073/j.hjxb.2019400150 |
[3] | LI Hao, LI Hua. Release coefficients during measuring non-uniform residual stress with blind-hole method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 85-88. |
[4] | WANG Xijing, Li Na, ZHANG Zhongke, Li Changri. FSW residual stress of aluminum alloy LY12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 81-84. |
[5] | MA Wenbo, CHEN Shuguang, LIU Huiqiong, LIN Wen, SHEN Yulong, LIU Jipu. FEM simulation of calibration on strain release coefficients in blind hole method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 97-100. |
[6] | LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36. |
[7] | LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part I:Theoretical analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 46-50. |
[8] | MENG Xianlu, CHEN Huaining, LIN Quanhong, CHEN Jing. Stress-strain around an indentation in measuring residual stress by indentation-strain method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 109-112. |
[9] | Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280. |
[10] | Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238. |
1. |
丁鹏龙,陈雷,何亮,俞俊. 对接试板焊接残余应力实测与数值模拟. 材料开发与应用. 2023(02): 16-22 .
![]() | |
2. |
耿汝伟,程延海,杜军,魏正英. 2319铝合金电弧增材制造温度场与应力演变研究. 材料导报. 2023(23): 169-176 .
![]() | |
3. |
丁稳稳,高晓龙,刘晶. 残余应力检测方法研究现状. 宝鸡文理学院学报(自然科学版). 2022(01): 103-108 .
![]() | |
4. |
杨胜利,刘乐乐,李亚楠,沈健. 淬火及预拉伸对铝锂合金板材残余应力的影响. 中国有色金属学报. 2022(04): 975-985 .
![]() | |
5. |
甘世明,刘华荥,翟之平,韩永全. A review of welding residual stress test methods. China Welding. 2022(02): 45-55 .
![]() | |
6. |
秦闯,欧鹏,张思远,李永正,阮浩,荀金标,沈静,张曙光. 船用铝合金MIG焊接残余应力数值研究. 舰船科学技术. 2022(19): 63-68 .
![]() | |
7. |
郭旭东,吴运新,龚海,聂林,陈旦. 喷丸对2219铝合金TIG焊接残余应力的影响. 兵器材料科学与工程. 2021(02): 5-10 .
![]() | |
8. |
李在峥. 一种压痕深度测试装置的校准方法. 计量科学与技术. 2021(04): 49-51 .
![]() | |
9. |
梁广冰,朱锦洪,尹丹青,周杨凯,马宁,张柯柯. TC4钛合金激光熔覆路径选择数值模拟研究. 河南科技大学学报(自然科学版). 2021(06): 12-18+5 .
![]() | |
10. |
黄钢,张清东,王春海,张勃洋,孔宁. 钢板残余应力盲孔测量法试验及应用. 焊接学报. 2020(09): 49-59+80+99-100 .
![]() | |
11. |
甘世明,韩永全,陈芙蓉,李小飞. 基于弹性模量变化的7A52铝合金VPPA-MIG复合焊接残余应力测试. 焊接学报. 2019(05): 13-17+23+161 .
![]() |