Advanced Search
LIU Lixiang, BAI Xiangwang, ZHOU Xiangman, ZHANG Haiou. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001
Citation: LIU Lixiang, BAI Xiangwang, ZHOU Xiangman, ZHANG Haiou. Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 24-29, 36. DOI: 10.12073/j.hjxb.20191230001

Study on the weld profile model function of multi-layer single-pass deposition in wire and arc additive manufacturing

More Information
  • Received Date: December 29, 2019
  • Available Online: September 26, 2020
  • The modeling and analysis of the cross-sectional profile of the weld bead provide the necessary topography data for slicing, path planning and process automation in wire and arc additive manufacturing process. MATLAB is used to develop an adaptive fitting program based on image processing and curve fitting, which can adaptively select a suitable fitting model function among the semi-elliptic function, arc function, cosine function and parabolic function. Based on this program, the distribution of the best mathematical model function of the single-layer single-pass weld bead profile in the feasible region of welding parameters, and the best model function of the weld bead profile on different layers in the multi-layer single-pass deposition are studied and analyzed. The results show that the adaptive fitting program has good accuracy in fitting the profile curve of the weld bead section; in the feasible region of deposition parameters, the profile of the single-layer single-pass weld bead can be represented by a semi-elliptic function or a cosine function model; for multi-layer single-pass stacking, the semi-elliptic function model has the highest fitting accuracy to the top profile of the weld bead.
  • 韩文涛, 林健, 雷永平, 等. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47 − 52.

    Han Wentao, Lin Jian, Lei Yongping, et al. Thermodynamic behavior of 2Cr13 thin-walled parts manufactured by arc additive under different residence time[J]. Transactions of the China Welding Institution, 2019, 40(12): 47 − 52.
    Hu Z, Qin X, Li Y, et al. Welding parameters prediction for arbitrary layer height in robotic wire and arc additive manufacturing[J]. Journal of Mechanical Science and Technology, 2020, 34(4): 1683 − 1695.
    Ding D, Shen C, Pan Z, et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-aided Design, 2016(73): 66 − 75.
    Cao Y, Zhu S, Liang X, et al. Overlapping model of beads and curve fitting of bead section for rapid manufacturing by robotic MAG welding process[J]. Robotics & Computer Integrated Manufacturing, 2011, 27(3): 641 − 645.
    Suryakumar S, Karunakaran K P, Bernard A, et al. Weld bead modeling and process optimization in hybrid layered manufacturing[J]. Computer-Aided Design, 2011, 43(4): 331 − 344. doi: 10.1016/j.cad.2011.01.006
    Xiong J, Zhang G, Gao H, et al. Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(2): 417 − 423. doi: 10.1016/j.rcim.2012.09.011
    Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics & Computer Integrated Manufacturing, 2015, 31(C): 101 − 110.
    闫峘宇, 刘文洁, 李新宇, 等. 电弧增材制造焊缝建模及尺寸规律研究[J]. 热加工工艺, 2018, 47(5): 177 − 181.

    Yan Huanyu, Liu Wenjie, Li Xinyu, et al. Study on weld modeling and dimension rules of wire and arc additive manufacturing[J]. Hot Working Technology, 2018, 47(5): 177 − 181.
    Hu Z, Qin X, Li Y, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing[J]. Journal of Intelligent Manufacturing, 2019: 1-15.doi: 10.1007/s10845-019-01501-z.
    Xiong J, Zhang G, Qiu Z, et al. Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing[J]. Journal of Cleaner Production, 2013, 41(1): 82 − 88.
    Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085
  • Related Articles

    [1]HUANG Gang, ZHANG Qingdong, WANG Chunhai, ZHANG Boyang, KONG Ning. Experimental research on the blind hole-drilling method for measuring residual stress of steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 49-59, 80. DOI: 10.12073/j.hjxb.20200403002
    [2]FU Wei, FANG Hongyuan, BAI Xinbo, CHEN Guoxi. Effect of process paths on residual stress of multi-layer and multi-pass laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 29-33. DOI: 10.12073/j.hjxb.2019400150
    [3]LI Hao, LI Hua. Release coefficients during measuring non-uniform residual stress with blind-hole method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 85-88.
    [4]WANG Xijing, Li Na, ZHANG Zhongke, Li Changri. FSW residual stress of aluminum alloy LY12[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (9): 81-84.
    [5]MA Wenbo, CHEN Shuguang, LIU Huiqiong, LIN Wen, SHEN Yulong, LIU Jipu. FEM simulation of calibration on strain release coefficients in blind hole method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (2): 97-100.
    [6]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36.
    [7]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part I:Theoretical analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 46-50.
    [8]MENG Xianlu, CHEN Huaining, LIN Quanhong, CHEN Jing. Stress-strain around an indentation in measuring residual stress by indentation-strain method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 109-112.
    [9]Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280.
    [10]Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238.
  • Cited by

    Periodical cited type(11)

    1. 丁鹏龙,陈雷,何亮,俞俊. 对接试板焊接残余应力实测与数值模拟. 材料开发与应用. 2023(02): 16-22 .
    2. 耿汝伟,程延海,杜军,魏正英. 2319铝合金电弧增材制造温度场与应力演变研究. 材料导报. 2023(23): 169-176 .
    3. 丁稳稳,高晓龙,刘晶. 残余应力检测方法研究现状. 宝鸡文理学院学报(自然科学版). 2022(01): 103-108 .
    4. 杨胜利,刘乐乐,李亚楠,沈健. 淬火及预拉伸对铝锂合金板材残余应力的影响. 中国有色金属学报. 2022(04): 975-985 .
    5. 甘世明,刘华荥,翟之平,韩永全. A review of welding residual stress test methods. China Welding. 2022(02): 45-55 .
    6. 秦闯,欧鹏,张思远,李永正,阮浩,荀金标,沈静,张曙光. 船用铝合金MIG焊接残余应力数值研究. 舰船科学技术. 2022(19): 63-68 .
    7. 郭旭东,吴运新,龚海,聂林,陈旦. 喷丸对2219铝合金TIG焊接残余应力的影响. 兵器材料科学与工程. 2021(02): 5-10 .
    8. 李在峥. 一种压痕深度测试装置的校准方法. 计量科学与技术. 2021(04): 49-51 .
    9. 梁广冰,朱锦洪,尹丹青,周杨凯,马宁,张柯柯. TC4钛合金激光熔覆路径选择数值模拟研究. 河南科技大学学报(自然科学版). 2021(06): 12-18+5 .
    10. 黄钢,张清东,王春海,张勃洋,孔宁. 钢板残余应力盲孔测量法试验及应用. 焊接学报. 2020(09): 49-59+80+99-100 . 本站查看
    11. 甘世明,韩永全,陈芙蓉,李小飞. 基于弹性模量变化的7A52铝合金VPPA-MIG复合焊接残余应力测试. 焊接学报. 2019(05): 13-17+23+161 . 本站查看

    Other cited types(12)

Catalog

    Article views (723) PDF downloads (54) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return