Advanced Search
GAN Shiming, HAN Yongquan, CHEN Furong, LI Xiaofei. 7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 13-17,23. DOI: 10.12073/j.hjxb.2019400120
Citation: GAN Shiming, HAN Yongquan, CHEN Furong, LI Xiaofei. 7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(5): 13-17,23. DOI: 10.12073/j.hjxb.2019400120

7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation

More Information
  • Received Date: December 14, 2018
  • A residual stress testing system based on hole-drilling method was designed by virtual instrument and NI data acquisition card to analyze the welding residual stress distribution for 7A52 aluminum alloyplates after the process of VPPA-MIG hybrid welding. To reduce the impact of elastic modulus error on the final measurement results, the elastic modulus is derived from curve that is fit to data measured in different hybrid welded joint areas. The experiment of VPPA-MIG welding residual stress measurement was carried out on 10 mm thick 7A52 aluminum alloy plates. The results show that the distribution of residual stresses on two sides of weld is basically symmetrical along the weld center. Maximum tensile stresses exist in the fusion zone, and the maximum transverse residual stress σy and the maximum longitudinal residual stress σx are 118 and 223 MPa, respectively. From fusion zone to heat affected zone, residual stresses are all tensile stresses, which become smaller gradually and are higher than the residual stresses in the weld center. Compared with the result of MIG welding, the maximum transverse residual stress and the maximum longitudinal residual stress of VPPA-MIG hybrid welding are higher, but the high-stress area of VPPA-MIG hybrid welding are narrower.
  • 韩永全,陈树君,殷树言.铝合金变极性等离子焊接电弧产热机理[J].焊接学报, 2007, 28(12):35-38 Han Yongquan, Chen Shujun, Yin Shuyan. Principle of arc produced heat in variable polarity plasma arc welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2007, 28(12):35-38
    韩永全,杜茂华,陈树君,等.铝合金变极性等离子弧穿孔焊过程控制[J].焊接学报, 2010, 31(11):93-96 Han Yongquan, Du Maohua, Chen Shujun, et al. Process control of variable polarity keyhole plasma arc welding for aluminum alloy[J]. Transactions of the China Welding Institution, 2010, 31(11):93-96
    Hong H T, Han Y Q, Du M H, et al. Characteristics of arc in variable polarity plasma arc welding of aluminum alloy[J]. China Welding, 2014, 23(3):73-77.
    Hong H T, Han Y Q, Du M H, et al. Investigation on droplet momentum in VPPA-GMAW hybrid welding of aluminum alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):2301-2308.5.
    洪海涛,韩永全,童嘉晖,等.铝合金VPPA-MIG复合焊接电弧形态及伏安特性[J].焊接学报, 2016, 37(9):65-69 Hong Haitao, Han Yongquan, Tong Jiahui, et al. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. Transactions of the China Welding Institution, 2016, 37(9):65-69
    洪海涛.铝合金VPPA-MIG复合焊接热源特性及工艺[D].呼和浩特:内蒙古工业大学, 2016.
    胥国祥,郭庆虎,胡庆贤,等.中厚板铝合金光纤激光+MIG复合热源焊接残余应力的数值分析[J].机械工程学报, 2018, 54(2):77-83 Xu Guoxiang, Guo Qinghu, Hu Qingxian, et al. Numerical analysis of welding residual stress in Laser+MIG hybrid butt welding of medium-thick aluminum alloy[J]. Journal of Mechanical Engineering, 2018, 54(2):77-83
    孙振邦,韩永全,杜茂华.铝合金LB-VPPA复合焊接残余应力场预测[J].焊接学报, 2018, 39(4):6-10 Sun Zhenbang, Han Yongquan, Du Maohua. Numerical prediction of residual stress field in LB-VPPA hybrid welding of aluminum alloys[J]. Transactions of the China Welding Institution, 2018, 39(4):6-10
    卢衍祥,单清群,王传刚,等.不同处理工艺对6005A铝合金激光-MIG复合焊接头残余应力的影响[J].电焊机, 2015, 45(10):134-137 Lu Yanxiang, Shan Qingqun, Wang Chuangang, et al. Influence of different treatment processes on the residual stress of welded joints in laser-MIG hybrid welding for 6005A aluminum alloy[J]. Electric Welding Machine, 2015, 45(10):134-137
    Nagy W, Van P E, Schotte K, et al. Measuring residual stresses in orthotropic steel decks using the incremental hole-drilling technique[J]. Experimental Techniques, 2017, 41(3):215-226.
    Richter R, Müller T. Measurement of residual stresses:determination of measurement uncertainty of the hole-drilling method used in aluminum alloys[J]. Experimental Techniques, 2017, 41(1):79-85.
    Vangi D, Ermini M. Plasticity effects in residual stress measurement by the hole drilling method[J]. Strain, 2002, 36(2):55-59.
    Owen R A, Preston R V, Withers P J, et al. Neutron and synchrotron measurements of residual strain in TIG welded aluminum alloy 2024[J]. Materials Science and Engineering, 2003, 24(346):159-167.
    Albertini G, Bruno G, Dunn B D, et al. Comparative hole-drilling and X-ray residual stress measurements on steel welded plate[J]. Materials Science and Engineering, 1997(224):157-162.
    黄超群,李桓,罗传光,等.盲孔法与压痕法测量2219铝合金熔焊焊缝残余应力的对比分析[J].焊接学报, 2017, 38(7):54-58 Huang Chaoqun, Li Huan, Luo Chuanguang, et al. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. Transactions of the China Welding Institution, 2017, 38(7):54-58
  • Related Articles

    [1]FENG Yue-hai, LIU Jia, YIN Shu-yan, WANG Ke-hong. Intelligent digital control system for CO2 short circuiting welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (10): 69-72.
    [2]SUN Guang, HE Jian-ping, BAI Ri-hui, WU Yi-xiong. Inverter CO2 arc welding power source with DSP-based waveform control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (4): 85-88.
    [3]ZHANG Peng-xian, MA Yue-zhou, CHEN Jian-hong, LIANG Wei-dong. An on-line adaptive control system of CO2 arc welding current waveform[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (5): 17-20,24.
    [4]HU Sheng sun, LI Shun hua, SUN Dong, SHAN Ping. Control rules and parameters of CO2 arc welding seam tracking system with ultrasonic sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (2): 22-26.
    [5]YU Jian-rong, JIANG Li-pei, SHI Yao-wu. Self-optimizing Intelligent Control of Current Waveform Parameters of CO2 Gas Shielded Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 26-30.
    [6]YU Jian-rong, JIANG Li-pei, SUN Zhen-guo, WANG Jun-bo. One-knob Intelligent Control System of CO2 Welding Machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 51-54.
    [7]LI Huan, LI Jun-yue, YANG Li-jun, ZHANC Bao-hong. The Closed-loop Real-time Controlling of Short-circuiting Transfer in CO2 Arc Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (1): 27-30.
    [8]JIAO Xiang-dong, JIANG Li-pei, XUE Long, CHAN Qiang, SUN Zhen-guo, WANG Jun-bo. Intelligent Control System of All-position Welding Robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 1-4.
    [9]DING Jing-zhu, HUANG Peng-fei, YIN Shu-yan, FENG Lei. Double Close Loop Inverter CO2 Welding System with Microprocessorbased Waveform Control[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (3): 47-50.
    [10]Han Zandong, Du Dong, Zhang Renhao, et al, . Fuzzy and PID Control of Droplet Transfer Frequency in CO2 Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (1): 21-24.

Catalog

    Article views (363) PDF downloads (74) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return