Citation: | WANG Xiaopeng, LI Xiaoyan, XU Zhou, WU Qi. X-ray stress measurement process of aluminum alloy by analysis of the full width at half maxima[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 86-90. DOI: 10.12073/j.hjxb.20191224003 |
方洪渊. 焊接结构学[M]. 北京: 机械工业出版社, 2017.
Fang Hongyuan. Welding structure[M]. Beijing: China Machine Press, 2017.
|
Liu Z C, Jiang C, Li B C, et al. A residual stress dependent multiaxial fatigue life model of welded structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(2): 300 − 313.
|
Kessal B A, Fares C, Meliani M H, et al. Effect of gas tungsten arc welding parameters on the corrosion resistance and the residual stress of heat affected zone[J]. Engineering Failure Analysis, 2020, 107: 104200. doi: 10.1016/j.engfailanal.2019.104200
|
Song S, Dong P. Residual stresses at weld repairs and effects of repair geometry[J]. Science and Technology of Welding and Joining, 2017, 22(4): 265 − 277. doi: 10.1080/13621718.2016.1224544
|
Božić Ž, Schmauder S, Wolf H. The effect of residual stresses on fatigue crack propagation in welded stiffened panels[J]. Engineering Failure Analysis, 2018, 84: 346 − 357. doi: 10.1016/j.engfailanal.2017.09.001
|
Lin J, Ma N, Lei Y, et al. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method[J]. Journal of Materials Processing Technology, 2017, 243: 387 − 394. doi: 10.1016/j.jmatprotec.2016.12.021
|
孙建通, 李晓延, 张亮, 等. 轧制铝合金的X-射线法残余应力测试[J]. 焊接学报, 2017, 38(1): 61 − 64.
Sun Jiantong, Li Xiaoyan, Zhang Liang, et al. X-ray residual stress measurement for rolled aluminum alloy[J]. Transactions of the China Welding Institution, 2017, 38(1): 61 − 64.
|
邓云华, 李晓延, 李庆庆, 等. 钛及钛合金X射线应力测试参数的选择[J]. 焊接学报, 2013, 34(2): 31 − 34.
Deng Yunhua, Li Xiaoyan, Li Qingqing, et al. Parameters selection of X-ray diffraction stress measurment for titanium alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 31 − 34.
|
Tsuji A, Okano S, Mochizuki M. Method of X-ray residual stress measurement for phase transformed welds[J]. Welding in the World, 2015, 59(4): 577 − 583. doi: 10.1007/s40194-015-0232-5
|
王小鹏, 李晓延, 吴奇, 等. 织构对6061-T6铝合金X射线应力测试精度的影响机理[J]. 材料导报, 2020, 34(20): 20081 − 20085. doi: 10.11896/cldb.19110034
Wang Xiaopeng, Li Xiaoyan, Wu Qi, et al. Influence mechanism of texture on the accuracy of X-ray stress measurement for 6061-T6 aluminum alloy[J]. Materials Reports, 2020, 34(20): 20081 − 20085. doi: 10.11896/cldb.19110034
|
Hauk V. Structural and residual stress analysis by nondestructive method[M]. Amsterdam: Elsevier Science B V, 1997.
|
Schäfer N, Chahine G A, Wilkinson A J, et al. Microstrain distributions in polycrystalline thin films measured by X-ray microdiffraction[J]. Journal of Applied Crystallography, 2016, 49(2): 632 − 635. doi: 10.1107/S1600576716003204
|
Withers P J, Bhadeshia H K D H. Residual stress. Part 2 - Nature and origins[J]. Materials Science and Technology, 2001, 17(4): 366 − 375. doi: 10.1179/026708301101510087
|
Stukowski A, Markmann J, Weissmüller J, et al. Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids[J]. Acta Materialia, 2009, 57(5): 1648 − 1654. doi: 10.1016/j.actamat.2008.12.011
|
Wilkens M. X-ray diffraction line broadening of crystals containing small-angle boundaries[J]. Journal of Applied Crystallography, 1979, 12(2): 119 − 125.
|
Naga Krishna N, Tejas R, Sivaprasad K, et al. Study on cryorolled Al–Cu alloy using X-ray diffraction line profile analysis and evaluation of strengthening mechanisms[J]. Materials & Design, 2013, 52: 785 − 790.
|
Ortiz A L, Shaw L. X-ray diffraction analysis of a severely plastically deformed aluminum alloy[J]. Acta Materialia, 2004, 52(8): 2185 − 2197. doi: 10.1016/j.actamat.2004.01.012
|
张定铨, 何家文. 材料中残余应力的X射线衍射分析和作用[M]. 西安: 西安交通大学出版社, 1999.
Zhang Dingquan, He Jiawen. Residual stress analysis by X-ray diffraction and its functions [M]. Xi’an: Xi’an Jiaotong University Press, 1999.
|
[1] | CAO Runping, HAN Yongquan, LIU Xiaohu, HONG Haitao, HAN Jiao. Effect of rare earth Ce on arc and droplet transfer behavior[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 95-102. DOI: 10.12073/j.hjxb.20231109001 |
[2] | HU Qingsong, YAN Zhaoyang, ZHANG Pengtian, CHEN Shujun. Arc behavior and droplet transfer in self-adaptive shunt alternating arc WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 41-46. DOI: 10.12073/j.hjxb.20230309003 |
[3] | YANG Yicheng, DU Bing, HUANG Jihua, HUANG Ruisheng, CHEN Jian, XU Fujia. Mechanism of wire and arc interaction in hollow tungsten arc welding with coaxial filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(4): 94-99. DOI: 10.12073/j.hjxb.20210913001 |
[4] | ZHOU Xiaochen1, LI Huan1, SONG Chunguang2, ZHANG Yuchang3. Study on characteristics of droplet transfer for pulsed TOPTIG[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 45-48. DOI: 10.12073/j.hjxb.20150609001 |
[5] | ZHU Xiaoyang, LI Huan, HUANG Chaoqun, YANG Ke, NI Yanbing, WANG Guodong. Analysis of droplet transfer and weld appearance in pulsed wire feeding MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 59-63. |
[6] | XIE Shengmian, WU Kaiyuan, WEN Yuanmei, GE Weiqing, HUANG Shisheng. Effects of pulse frequency on TCGMAW droplet transfer modes[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (3): 69-72. |
[7] | LI Fang, HUA Xueming, WANG Weibin, WU Yixiong. Modeling of droplet transfer electrical characteristics in pulsed gas melted arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (7): 97-100. |
[8] | LIU Gang, FENG Yun, LI Jun-yue, FAN Rong-huan. Arc spectrum signals of droplet spray transfer in MIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 40-44. |
[9] | YANG Yun-qiang, ZHANG Xiao-qi, LI Jun-yue, LI Huan. Selection of droplet transfer specific spectrum window[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (1): 14-18. |
[10] | YANG Yun-qiang, LI Jun-yue, HU Sheng-gang, LIU Gang, LI Huan. The Characteristic Spectral Information of Droplet Transfer in Pulsed MIG Welding and It's Applications[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 36-38. |