Advanced Search
YAN Yanfu, LI Chaojun, REN Xiaofei, GU Tianliang. Effect of In element on spreadability and micro-interface of Zn15Al5Cu solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 51-55. DOI: 10.12073/j.hjxb.20191113002
Citation: YAN Yanfu, LI Chaojun, REN Xiaofei, GU Tianliang. Effect of In element on spreadability and micro-interface of Zn15Al5Cu solder[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 51-55. DOI: 10.12073/j.hjxb.20191113002

Effect of In element on spreadability and micro-interface of Zn15Al5Cu solder

More Information
  • Received Date: November 12, 2019
  • Available Online: July 26, 2020
  • In order to obtain brazing material for copper and aluminum brazing with good performance, Zn15Al5CuxIn (x = 0,1,3,5) brazing material is prepared by adding different quality In. Through scanning electron microscope (SEM), energy disperse spectroscopy (EDS) and other analytical testing methods, the spreadability of Zn15Al5CuxIn solder on Al, Cu plates and the change of interface composition were studied. The results show that the addition of an appropriate amount of In can significantly improve the wettability of Zn15Al5Cu solder on Cu and Al base metals. When the amount of In added is 5%, the Zn15Al5Cu5In solder has the largest spread area on the Al base material, reaching 251 mm2, which is 42.6% higher than that of the base solder; When the In addition amount is 3%, the Zn15Al5Cu3In solder has the largest spread area on the Cu base material, reaching 110 mm2, which is 69% higher than the base solder.
  • 王泽宇, 赵莹莹, 常东旭, 等. 热处理对Cu/Al-3.25Si合金冷压焊接复合带界面组织与性能的影响[J]. 焊接学报, 2015, 36(11): 81 − 84.

    Wang Zeyu, Zhao Yingying, Chang Dongxu, et al. Effect of heat treatment on interface microstructure and property of Cu/Al-3.25Si cold-press welded joint[J]. Transactions of the China Welding Institution, 2015, 36(11): 81 − 84.
    Zhang G Q, Feng X M, Feng Z Y, et al. Effect of mixed rare earth and Sr on microstructure and brazability of Al-20Cu-5Si-2Ni filler metal[J]. China Welding, 2016, 25(2): 68 − 72.
    王世宇, 李卓然, 张招, 等. Mg/Cu/Al接触反应钎焊工艺及元素扩散行为分析[J]. 焊接学报, 2018, 39(1): 13 − 16. doi: 10.12073/j.hjxb.2018390004

    Wang Shiyu, Li Zhuoran, Zhang Zhao, et al. Process and diffusion analysis on contact reactive brazing of Mg/Cu/Al[J]. Transactions of the China Welding Institution, 2018, 39(1): 13 − 16. doi: 10.12073/j.hjxb.2018390004
    Bobzin K, Öte M, Wiesner S, et al. Formation of the reaction zone between tin-copper brazing fillers and aluminum silicon-magnesium alloys: Experiments and thermodynamic analysis[J]. Materials Science and Engineering Technology, 2017, 48(12): 1241 − 1248.
    Berlanga-Labari C, Albístur-Goñi A, Balerdi-Azpilicueta P, et al. Study and selection of the most appropriate filler materials for an Al/Cu brazing joint in cooling circuits[J]. Materials & Manufacturing Processes, 2011, 26(2): 236 − 241.
    Wang X G, Li X G, Yan F J, et al. Effect of heat treatment on the interfacial microstructure and properties of Cu-Al joints[J]. Welding in the World, 2016, 61(1): 1 − 10.
    Zhang Q Z, Gong W B, Liu W. Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1779 − 1786. doi: 10.1016/S1003-6326(15)63783-9
    金霞, 杨倡进, 刘保祥. 铝及铝合金用钎剂的发展现状和趋势[J]. 电子工艺技术, 2008, 29(2): 112 − 115. doi: 10.3969/j.issn.1001-3474.2008.02.016

    Jin Xia, Yang Changjin, Liu Baoxiang. Development status and trends of flux for aluminum and aluminum alloys[J]. Electronics Process Technology, 2008, 29(2): 112 − 115. doi: 10.3969/j.issn.1001-3474.2008.02.016
    薛松柏, 董健. Al/Cu 管异种材料火焰钎焊连接[J]. 焊接, 2003(12): 23 − 25. doi: 10.3969/j.issn.1001-1382.2003.12.008

    Xue Songbai, Dong Jian. Flame brazing connection of Al/Cu tube dissimilar materials[J]. Welding & Joining, 2003(12): 23 − 25. doi: 10.3969/j.issn.1001-1382.2003.12.008
    谢海平, 于大全, 马海涛, 等. Sn-Zn-Cu 无铅钎料的组织、润湿性和力学性能[J]. 中国有色金属学报, 2004, 14(10): 1694 − 1699. doi: 10.3321/j.issn:1004-0609.2004.10.013

    Xie Haiping, Yu Daquan, Ma Haitao, et al. Microstructure, wettability and mechanical properties of Sn-Zn-Cu lead-free solder[J]. Transactions of Nonferrous Metals Society of China, 2004, 14(10): 1694 − 1699. doi: 10.3321/j.issn:1004-0609.2004.10.013
    张满, 薛松柏, 姬峰. CuAl2相对铜铝钎焊接头组织与性能的影响[J]. 焊接学报, 2011, 32(2): 93 − 96.

    Zhang Man, Xue Songbai, Ji Feng. Effect of CuAl2 on the microstructure and properties of copper-aluminum brazed joints[J]. Transactions of the China Welding Institution, 2011, 32(2): 93 − 96.
    Ji F, Xue S B, Dai W. Effects of Ti on the brazability of Zn-22Al-xTi filler metals as well as properties of Cu/Al brazing joints[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2453 − 2457. doi: 10.1016/S1875-5372(14)60037-0
    Chen R, Huang S S, He Y M. Effect of Sn content on brazing properties of Ag based filler alloy[J]. Material Sciences, 2013, 3(1): 35 − 36. doi: 10.12677/MS.2013.31007
    卢方焱, 薛松柏, 张亮, 等. 微量 In 对 AgCuZn 钎料组织和性能的影响[J]. 焊接学报, 2008, 29(12): 85 − 88. doi: 10.3321/j.issn:0253-360X.2008.12.022

    Lu Fangyan, Xue Songbai, Zhang Liang, et al. Effects of trace In on the structure and properties of AgCuZn solders[J]. Transactions of the China Welding Institution, 2008, 29(12): 85 − 88. doi: 10.3321/j.issn:0253-360X.2008.12.022
    Young T. An essay on the cohesion of fluids[J]. Proceedings of the Royal Society of London, 1995, 1805(95): 65 − 87.
  • Related Articles

    [1]ZHU Ming, LEI Runji, WENG Jun, WANG Jincheng, SHI Yu. MIG weld seam tracking system based on image automatic enhancement and attention mechanism deep learning[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 90-94. DOI: 10.12073/j.hjxb.20240718002
    [2]XU Yuanzhao, LUO Jiutian, FANG Naiwen, FENG Zhiqiang, WU Pengbo, LI Quan. Image processing technology for ship plate melt pool based on MS-FCM algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 82-90. DOI: 10.12073/j.hjxb.20231010001
    [3]DAI Xinxin, ZHENG Qiaoqiao, JI Yukun, GAO Xiangdong. Numerical simulation and experimental analysis of magnetic field distribution of magneto-optical imaging in weld defects[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 102-108. DOI: 10.12073/j.hjxb.2019400321
    [4]CHI Dazhao, GANG Tie. Defect detection method based on 2D entropy image segmentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 25-28.
    [5]QI Jiyang, LI Jinyan, LU Zhenyun, WEI Sai. Application of improved Otsu algorithm to welding image segmentation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 97-100.
    [6]GAO Weixin, HU Yuheng, MU Xiangyang, WANG Zhi. Study on sub-arc X-ray welding image defect segmentation algorithm and defect model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (4): 37-41.
    [7]SHEN Yingji, WANG Kehong, PAN Mingcai, CHEN Fei. Prelimimary about pool image character of welding defect based on vision sensing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 105-108.
    [8]LIU Suyi, LI Bing, ZHANG Hua, JIA Jianping. Feature extraction and image processing for underwater weld with laser vision[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 45-48.
    [9]SHAO Jiaxin, DU Dong, ZHU Xinjie, GAO Zhiling, WANG Chen. Weld defect detection of double sides weld based on X-ray digitized image[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (11): 21-24.
    [10]SUN Yi, SUN Hong-yu, BAI Peng, WANG Yu, TIAN Yan-ping. Real-time automatic detection of weld defects in X-ray images[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 115-118,122.
  • Cited by

    Periodical cited type(4)

    1. 朱新杰,李永涛,邓明晰,姚森,张洁. 焊缝散射条件下板中超声导波直线阵列多帧变秩成像检测. 焊接学报. 2025(01): 80-86 . 本站查看
    2. 宋艳艳,王泽民,叶振宇,陈乐. 基于视觉软件的小径管对接焊缝DR图像缺陷自动识别. 上海化工. 2025(02): 44-48 .
    3. 李兴红. 基于深度学习的液氯罐车射线图像缺陷自动识别研究. 中国高新科技. 2024(12): 15-17 .
    4. 程希莹,何云凯,吴晗宇. 基于深度学习的焊缝X射线图像缺陷识别. 淮阴师范学院学报(自然科学版). 2024(04): 319-328 .

    Other cited types(0)

Catalog

    Article views (382) PDF downloads (12) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return