Advanced Search
CHEN Genyu, WANG Bin, ZHONG Peixin, LIU Jianhua, LI Wei. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 44-50. DOI: 10.12073/j.hjxb.20191016002
Citation: CHEN Genyu, WANG Bin, ZHONG Peixin, LIU Jianhua, LI Wei. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(4): 44-50. DOI: 10.12073/j.hjxb.20191016002

Laser scanning welding of 2060 Al-Li alloy with filler wire

More Information
  • Received Date: October 15, 2019
  • Available Online: July 26, 2020
  • In order to solve the problems of porosity and insufficient tensile strength of aluminum lithium alloy weld, a method of laser scanning welding with filler wire was proposed. Taking 2060 Al-Li alloy with 2 mm thickness as research objects, the suppression effect of laser scanning welding with filler wire on welding defects of Al-Li alloy was investigated. A high-speed camera system was built to explore the mechanism and the change of the dynamic evolution of the molten pool. The influence of scanning parameters on the formation of porosity in weld seam and the mechanism of inhibiting porosity of laser scanning welding with filler wire technique were investigated. Response surface methodology was applied to explore the influence of process parameters on tensile strength. The quantitative relationship between process parameter combination, tensile strength and the optimal parameter combination were proposed. The maximum tensile strength of the weld is 382 MPa, which is 76.4% of the base metal. The research shows that the flow of the molten pool is stable, and meanwhile the eruption of the keyhole is weak and showing the periodicity, in the process of “∞” shaped laser scanning welding with filler wire. And the process of “∞” shaped laser scanning welding with filler wire can effectively inhibit weld porosity and improve the welding quality of Al-Li alloy.
  • 陈国庆, 尹乾兴, 司晓庆, 等. 铝锂合金焊接技术的研究现状分析[J]. 焊接学报, 2019, 40(8): 155 − 160.

    Chen Guoqing, Yin Qianxing, Si Xiaoqing, et al. Research status analysis of aluminum-lithium alloy welding[J]. Transactions of the China Welding Institution, 2019, 40(8): 155 − 160.
    周利, 李高辉, 刘朝磊, 等. 铝锂合金焊接技术的研究现状[J]. 焊接, 2017(1): 7 − 12, 68. doi: 10.3969/j.issn.1001-1382.2017.01.003

    Zhou Li, Li Gaohui, Liu Zhaolei, et al. Research progress in welding technology of Al-Li alloy[J]. Welding & Joining, 2017(1): 7 − 12, 68. doi: 10.3969/j.issn.1001-1382.2017.01.003
    Dittrich D. Laser beam welding of hard to weld Al alloys for a reginal aircraft fuselage design-first results[J]. Physics Procedia, 2011, 12(1): 113 − 122.
    林凯莉, 杨武雄, 吕俊霞, 等. 2198-T851铝锂合金激光焊接工艺研究[J]. 中国激光, 2014, 41(1): 90 − 95.

    Lin Kaili, Yang Wuxiong, Lu Junxia, et al. Laser beam welding study of 2198-T851 aluminum-lithium alloy[J]. Chinese Journal of Lasers, 2014, 41(1): 90 − 95.
    Lukin V I, Skupov A A, Ioda E N. Investigation of the weldability of an aluminium–lithium alloy[J]. Welding International, 2018, 32(3): 214 − 218. doi: 10.1080/09507116.2017.1388047
    安娜, 张心怡, 杨武雄, 等. 2060铝锂合金电流辅助激光填丝焊接工艺分析[J]. 焊接学报, 2017, 38(3): 83 − 86.

    An Na, Zhang Xinyi, Yang Wuxiong, et al. Electrical current assisted laser welding of 2060 aluminum lithium alloy with filler wire[J]. Transactions of the China Welding Institution, 2017, 38(3): 83 − 86.
    刘震磊, 崔祜涛, 姬书得, 等. 工艺参数影响2060铝锂合金搅拌摩擦焊接头的成形规律[J]. 焊接学报, 2016, 37(7): 79 − 82.

    Liu Zhenlei, Cui Hutao, Ji Shude, et al. Effect of process parameters on the forming law of friction stir welded joint of 2060 Al-Li alloy[J]. Transactions of The China Welding Institution, 2016, 37(7): 79 − 82.
    Salari E, Jahazi M, Khodabandeh A, et al. Friction stir lap welding of 5456 aluminum alloy with different sheet thickness: process optimization and microstructure evolution[J]. International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 39 − 48. doi: 10.1007/s00170-015-7342-5
    Katayama S, Nagayama H, Mizutani M, et al. Fiber laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 744 − 752. doi: 10.1080/09507110902836911
    Kacar I, Ozturk F, Yilbas B S. A review of and current state-of-the-art in laser beam welding in the automotive industry[J]. Laser in Engineering, 2016, 33(4−6): 327 − 338.
    Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laser welding, and development of prevention procedures of welding defects[J]. Proceedings of Spie the International Society for Optical Engineering, 2009, 7195: 7195R1 − 9.
    Huang L, Hua X, Wu D, et al. Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel[J]. Materials Processing Technology, 2018, 252: 421 − 431. doi: 10.1016/j.jmatprotec.2017.10.011
    Lin R, Wang H P, Lu F, et al. Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys[J]. Heat and Mass Transfer, 2017, 108: 244 − 256. doi: 10.1016/j.ijheatmasstransfer.2016.12.019
    Zhang L J, Zhang J X, Gumenyuk A, et al. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser[J]. Materials Processing Technology, 2014, 214(8): 1710 − 1720. doi: 10.1016/j.jmatprotec.2014.03.016
    Matsunawa A, Mizutani M, Katayama S. Porosity formation mechanism and its prevention in laser welding[J]. Welding International, 2003, 17(6): 431 − 437. doi: 10.1533/wint.2003.3138
  • Related Articles

    [1]AN Tongbang, ZHENG Qing, ZHANG Yonglin, LIANG Liang, ZHU Yanjie, PENG Yun. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 75-81. DOI: 10.12073/j.hjxb.20220402002
    [2]ZHANG Hua, GUO Qilong, ZHAO Changyu, LIN Sanbao, SHI Gongqi. Influence of two-step aging on structure and stress corrosion sensitivity of friction stir welded 7050-T7451 aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(6): 1-5. DOI: 10.12073/j.hjxb.20190513001
    [3]YAN Chunyan, YUAN Yuan, ZHANG Kezhao, WU Lichao, WANG Baosen. Investigation on cold cracking susceptibility of X100 pipeline steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 41-46. DOI: 10.12073/j.hjxb.2019400310
    [4]RUAN Ye, SU Jinlong, QIAO Jianyi, QIU Xiaoming, XING Fei. Effect of humidity on crack sensitivity of aluminum alloy weld joint and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(1): 89-93. DOI: 10.12073/j.hjxb.2019400018
    [5]YAO Qianyu, DENG Caiyan, GONG Baoming, WANG Dongpo. The sensitivity analysis of parameters involved in engineering critical assessment for the submarine pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 41-44.
    [6]ZHANG Jingqiang, YANG Jianguo, XUE Gang, WANG Jiajie, FANG Hongyuan. Hydrogen induced cracking sensibility of welded joint based on tensile test with hydrogen pre-charging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 89-92.
    [7]ZHANG Qunbing, NIU Jing, ZHAO Pengfei, HUANG Yong, LI Zhigang, ZHANG Jianxun. Influence of preheating temperature on cold cracking sensitivity of 12Cr10Co3W2Mo heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 87-91.
    [8]ZHANG Yuanjie, PENG Yun, MA Chengyong, PENG Xinna, TIAN Zhiling, LU Jiansheng. Harden quenching tendency and cold cracking susceptibility of Q890 steel during welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (6): 53-56.
    [9]LAN Liangyun, QIU Chunlin, ZHAO Dewen, GAO Xiuhua. Toughness of welding heat affected zone in high strength steel with low welding crack susceptibility[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (1): 41-44.
    [10]DU Yi, ZHANG Tian-hong, ZHANG Jun-xu. Analysis on welding cold crack sensibility of 10Ni8CrMoV steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 93-96.
  • Cited by

    Periodical cited type(10)

    1. 刘许亮. 基于改进粒子滤波的焊缝磁光成像增强. 电子器件. 2023(01): 96-102 .
    2. 税法典,陈世强. 基于机器视觉的数据线焊接缺陷检测. 无损检测. 2023(08): 67-72 .
    3. 刘倩雯,叶广文,马女杰,高向东. 焊接微缺陷磁光成像检测有限元分析. 精密成形工程. 2022(03): 94-101 .
    4. 代欣欣,高向东,郑俏俏,季玉坤. 焊缝缺陷磁光成像模糊聚类识别方法. 焊接学报. 2021(01): 54-57+101 . 本站查看
    5. 王付军,刘兰英. 基于微焦点X射线的SMT焊点缺陷检测仿真. 计算机仿真. 2020(09): 428-431 .
    6. 甄任贺,熊建斌,周卫. 基于磁荷理论的微间隙焊缝磁光成像规律研究. 电焊机. 2019(07): 84-88 .
    7. 陈廷艳,梁宝英,罗瑜清. 基于神经网络的焊缝宽度预测方法研究. 机电信息. 2019(30): 88-89+91 .
    8. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    9. 王春草,高向东,李彦峰,张南峰. 磁光成像无损检测方法的研究现状与展望. 制造技术与机床. 2019(11): 31-37 .
    10. 张佳莹,丛森,刚铁,林尚扬. 基于频率–相位编码信号激励的焊缝超声检测分析. 焊接学报. 2018(07): 7-11+41+129 . 本站查看

    Other cited types(7)

Catalog

    Article views (366) PDF downloads (25) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return