Advanced Search
ZHANG Lihong, CHEN Furong, CHANG Jiangang. Effect of weld thermal cycle on low temperature toughness of 09MnNiDR steel heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 91-96. DOI: 10.12073/j.hjxb.20190911002
Citation: ZHANG Lihong, CHEN Furong, CHANG Jiangang. Effect of weld thermal cycle on low temperature toughness of 09MnNiDR steel heat affected zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 91-96. DOI: 10.12073/j.hjxb.20190911002

Effect of weld thermal cycle on low temperature toughness of 09MnNiDR steel heat affected zone

More Information
  • Received Date: September 10, 2019
  • Available Online: July 12, 2020
  • The effect of welding heat cycle on low temperature toughness of the coarse-grained heat affected zone (CGHAZ) and inter-critically reheated coarse-grained heat affected zone (IRCGHAZ) of 09MnNiDR steel was studied by Gleeble-3800. The results show that when the heat input is 15 kJ/cm and the interpass temperature is 150 ℃, the microstructure of CGHAZ is lath martensite and lower bainite. The lower bainite restricts the growth of martensite and improves the low temperature toughness. While IRCGHAZ is continue to maintain the microstructure of CGHAZ. In the impact test at −70 ℃, IRCGHAZ has the better low-temperature impact toughness than CGHAZ. When the heat input is 15 kJ/cm and the interpass temperature is 150 ℃, the impact energy is the highest of 65 . According to the thermal simulation results, the 09MnNiDR steel was welded with the welding heat input of 15 ~22 J/cm and interpass temperature of 150 ℃, the impact energy of heat-affected zone is 101 J at −70 ℃, and the fracture morphology has a large number of isometric dimples, which has good low-temperature toughness. In the tensile test at −70 ℃, the yield strength is 477 MPa, the tensile strength is 607 MPa, and the elongation is 28.5%, showing the better strength and plasticity. Hardness test results show that the hardness of base metal, weld and heat affected zone increase successively, and there is no softening phenomenon.
  • Laurencas Raslavičius, Artūras Keršys, Saulius Mockus, et al. Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 513 − 525. doi: 10.1016/j.rser.2014.01.052
    Fabbri G, Serra F, Paschero M, et al. Development of an innovative LPG system for ICE and extended range electric vehicles[C]//IEEE International Symposium on Industrial Electronics. New York: IEEE, 2013:1-6.
    胡昕明, 高强, 乔馨, 等. 正火温度对09MnNiDR钢组织性能的影响[J]. 钢铁, 2011, 46(3): 71 − 74.

    Hu Xinming, Gao Qiang, Qiao Xin, et al. Effect of normalization temperature on microinstructure and mechanical properrties of 09MnNiDR plate steel[J]. Iron and Steel, 2011, 46(3): 71 − 74.
    邓彩艳, 牛亚如, 王东坡, 等. 9Ni钢T&T焊接工艺低温韧性[J]. 焊接学报, 2018, 39(1): 109 − 113.

    Deng Caiyan, Niu Yaru, Wang Dongpo, et al. Low-temperature fracture toughness of welded joints for TOP-TIG welding on 9Ni steel[J]. Transactions of the China Welding Institution, 2018, 39(1): 109 − 113.
    刘璐, 王加友, 李大用, 等. 10Ni5CrMoV钢错位同步双面双弧焊接接头抗低温脆断性能[J]. 焊接学报, 2016, 37(8): 109 − 113.

    Liu Lu, Wang Jiayou, Li Dayong, et al. Low temperature brittle fracture resistance of asymmetrical synchronous double-sided arc jiont of 10Ni5CrMoV steel[J]. Transactions of the China Welding Institution, 2016, 37(8): 109 − 113.
    丁连征, 王锴, 孟庆森. SA38Gr.B钢焊接热影响区组织及性能的热模拟试验[J]. 焊接学报, 2014, 35(8): 91 − 94.

    Ding Lianzheng, Wang Kai, Meng Qingsen. Weldablity research on the the SA38Gr.B steel[J]. Transactions of the China Welding Institution, 2014, 35(8): 91 − 94.
    王西霞, 曲锦波, 杨汉. 09MnNiDR钢焊接临界粗晶区冲击脆断行为及焊后热处理工艺[J]. 钢铁研究学报, 2014, 26(4): 46 − 52.

    Wang Xixia, Qu Jinbo, Yang Han. Impact fracture behavior and post-welding heat treatment process of the intercritically reheated coarse-grained heat-affected zone of 09MnNiDR steel[J]. Journal of Iron and Steel Research, 2014, 26(4): 46 − 52.
    Chen Jie, Zhan Xiaohong, Xia Ling, et al. Quantitative research on the heat affected zone of weave bead welding for Invar alloy[J]. China Welding, 2017, 26(2): 18 − 22.
    严铿, 叶逢雨, 刘炜. 焊接热输入对F550Z钢焊接接头低温韧性的影响[J]. 焊接学报, 2014, 35(3): 93 − 96.

    Yan Keng, Ye Fengyu, Liu Wei. Effect of heat inputs on low temper- ature toughness of F550Z steel welding joints[J]. Transactions of the China Welding Institution, 2014, 35(3): 93 − 96.
    武强. 07MnNiCrMoVDR钢焊接热影响区性能的模拟研究[D]. 天津: 天津大学, 2007.
  • Related Articles

    [1]LI Liying, WANG Xiaolei, LIU Zhenhong, ZHOU Cong, HAN Bin. Microstructure and low temperature toughness of HAZ of domestic 06Ni9DR Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 91-96. DOI: 10.12073/j.hjxb.20200202002
    [2]CAO Rui, YANG Zhaoqing, LI Jinmei, LEI Wanqing, ZHANG Jianxiao, CHEN Jianhong. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(5): 7-13. DOI: 10.12073/j.hjxb.20190818003
    [3]DONG Liming, YANG Li, DAI Jun, PAN Xin, ZHANG Yu. Development of submerged arc welding wire for fabrication of hot bend low-temperature pipeline steel K65 pipe[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 120-124.
    [4]YAN Keng, YE Fengyu, LIU Wei. Effect of heat inputs on low temperature toughness of F550Z steel welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(3): 93-96.
    [5]SONG Shaopeng, LI Zhuoxin, LI Guodong, SHI Chuanwei. Analysis on low temperature toughness of self-shielded flux cored wire used for pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (6): 68-72.
    [6]ZHAO Yue, WU Aiping, YUTAKA S. Sato, HIROYUKI Kokawa. Fracture toughness of friction stir welded Invar 36 alloy at low temperature[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 89-92.
    [7]YAN Chunyan, LI Wushen, XUE Zhenkui, BAI Shiwu, FENG Bin. ffects of welding parameters on cryogenic toughness in heat-affected zones for 9% Ni steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 101-104.
    [8]BAI Shiwu, LI Wushen, DI Xinjie, WU Qiang. Toughness mechanism of CGHAZ of 07MnNiCrMoVDR steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 25-28.
    [9]Zhang Zhi, Zhang Weyue, Chen Banggu. Development of a High-toughness Self-shielded Flux-cored Wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (2): 71-75.
    [10]Sun Jingtao, Zhou Zhaowei, Lin Qing. Low-temperaturc toughness of overheated zone in weld of 15MnVNq-C steel used for Jiujiang Bridge[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 228-234.
  • Cited by

    Periodical cited type(4)

    1. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 焊接. 2022(01): 26-33+40 .
    2. 朱梓坤,韩阳,张舟,张义,周龙早. Q690D低合金高强钢模拟焊接热影响区的组织和性能. 机械制造文摘(焊接分册). 2022(03): 12-19+36 .
    3. 李金梅,杨兆庆,梁小武,张建晓,雷万庆,曹睿. 热输入对09MnNiDR钢焊接热影响区粗晶区组织和韧性的影响. 机械工程材料. 2021(12): 72-77 .
    4. 徐鹏飞,赵作鹏,程红霞,肖福仁. X80管线钢焊接热模拟热影响区疲劳裂纹扩展行为的分析及预测. 金属热处理. 2020(12): 184-188 .

    Other cited types(3)

Catalog

    Article views (541) PDF downloads (27) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return