Advanced Search
MA Lin, LI Mingshen, WHEN Qi, JI Shude, ZHOU Changzhuang. Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112
Citation: MA Lin, LI Mingshen, WHEN Qi, JI Shude, ZHOU Changzhuang. Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(4): 125-132. DOI: 10.12073/j.hjxb.2018400112

Effect of zinc interlayer on Hook defects of aluminum alloy ultrasonic assisted friction stir spot welding joint

More Information
  • Received Date: October 28, 2018
  • Hook defect is one of the factors that restrict the quality of aluminum alloy friction stir spot welding (FSSW) joints. In this paper, a new process of ultrasonic friction stir spot welding (UAFSSW) with zinc interlayer was proposed. Ultrasonic vibration improved the fluidity of the material and promoted the elements diffusion. Meanwhile, by adding pure zinc interlayer, the rapid metallurgical bonding of Hook zone materials can be realized, therefore, the quality of UAFSSW joint can be improved. As the results shown, compared with conventional UAFSSW method, adding zinc interlayer had obvious positive effects on Hook forming of joint. Under different heat input conditions, tensile-shear strengths of UAFSSW joints increased by adding zinc interlayer. The tensile-shear failure load of the joint obtained by adding zinc interlayer method improves 21.36% and 12.79% than conventional UAFSSW process when the rotational speed is 600 and 1 200 r/min, respectively.
  • 岳玉梅, 周振鲁, 姬书得, 等. 半螺纹搅拌针对2024铝合金搅拌摩擦搭接焊力学性能影响[J]. 焊接学报, 2016, 37(10): 69 − 72
    Yue Yumei, Zhou Zhenlu, Ji Shude, et al. Effect of half-threaded pin on mechanical properties of friction stir lap welded alclad 2024 aluminum alloy[J]. Transactions of the China Welding Institution, 2016, 37(10): 69 − 72
    Zhang Zhao, Zhang Hongwu. Simulation of 3D material flow in friction stir welding of AA6061-T6[J]. China Welding, 2008, 17(1): 57 − 63.
    Fu Tian, Li Wenya, Yang Xiawei, et al. State-of-the-art of friction stir spot welding[J]. Journal of Materials Engineering, 2015, 43(4): 102 − 114
    Ji Shude, Zhuo Bin, Ma Lin, et al. Simulation of material flow behavior during refill friction stir spot welding process[J]. Transactions of the China Welding Institution, 2016, 37(4): 39 − 42
    傅 田, 李文亚, 杨夏炜, 等. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102 − 114
    Zhang Yong, Ye Wu, Zhou Yunyun, et al. Defect repair of resistance spot welded aluminum alloy joint by friction stirring[J]. Transactions of the China Welding Institution, 2017, 38(3): 17 − 21
    Sarkar R, Pal T K, Shome M. Material flow and intermixing during friction stir spot welding of steel[J]. Journal of Materials Processing Technology, 2016, 227: 96 − 109.
    Kim J R, Ahn E Y, Das H, et al. Effect of tool geometry and process parameters on mechanical properties of friction stir spot welded dissimilar aluminum alloys[J]. International Journal of Precision Engineering & Manufacturing, 2017, 18(3): 445 − 452.
    Ma Yinan, Tao Wang, Chen Yanbin. Laser spot welding of LF6 aluminum with double laser beams[J]. Infrared & Laser Engineering, 2014, 43(3): 707 − 711
    姬书得, 卓 彬, 马 琳, 等. 回填式搅拌摩擦点焊过程的材料流动规律模拟[J]. 焊接学报, 2016, 37(4): 39 − 42
    Liu Xinbo, Qiao Fengbin, Zhou Faquan, et al. Simulation and experimental research for ultrasonic assisted filling friction stir spot welding of aluminum alloy[J]. Mechanical Science & Technology for Aerospace Engineering, 2016, 35(9): 1391 − 1395
    张 勇, 叶 武, 周昀芸, 等. 铝合金电阻点焊接头缺陷的搅拌摩擦修复[J]. 焊接学报, 2017, 38(3): 17 − 21
    Pashazadeh H, Gheisari Y, Hamedi M. Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm[J]. Journal of Intelligent Manufacturing, 2016, 27(3): 549 − 559.
    马轶男, 陶 汪, 陈彦宾. LF6铝合金双光束激光点焊工艺研究[J]. 红外与激光工程, 2014, 43(3): 707 − 711
    Gerlich A, Su P, Yamamoto M, et al. Effect of welding parameters on the strain rate and microstructure of friction stir spot welded 2024 aluminum alloy[J]. Journal of Materials Science, 2007, 42(14): 5589 − 5601.
    Ibrahim M. Spot welding of 6061 aluminum alloy by friction stir spot welding process[J]. Engineering Technology & Applied Science Research, 2017, 3(3): 1629 − 1632.
    Sajed M, Bisadi H. Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys[J]. Welding in the World, 2016, 60(1): 33 − 40.
    Lathabai S, Painter M J, Cantin G, et al. Friction spot joining of an extruded Al–Mg–Si alloy[J]. Scripta Materialia, 2006, 55(10): 899 − 902.
    刘新波, 乔凤斌, 周法权, 等. 超声辅助铝合金填充式搅拌摩擦点焊的仿真和试验研究[J]. 机械科学与技术, 2016, 35(9): 1391 − 1395
    Zhang C Q, Robson J D, Prangnell P B. Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4[J]. Journal of Materials Processing Tech, 2016, 231: 382 − 388.
    Park K. Development and analysis of ultrasonic assisted friction stir welding process[J]. Dissertations & Theses - Gradworks, 2009, 222(10): 91 − 102.
    Ji S D, Li Z W, Ma L, et al. Investigation of ultrasonic assisted friction stir spot welding of magnesium alloy to aluminum alloy[J]. Strength of Materials, 2016, 48(1): 2 − 7.
    Rostamiyan Y, Seidanloo A, Sohrabpoor H, et al. Experimental studies on ultrasonically assisted friction stir spot welding of AA6061[J]. Archives of Civil & Mechanical Engineering, 2015, 15(2): 335 − 346.
    MacDonald W D, Eagar T W. Transient liquid phase bonding[J]. Annual Review of Materials Science, 1992, 22(1): 23 − 46.
    Askew J R, Wilde J F, Khan T I. Transient liquid phase bonding of 2124 aluminium metal matrix composite[J]. Metal Science Journal, 2013, 14(9–10): 920 − 924.
    Niu S, Ji S, Yan D, et al. AZ31B/7075-T6 alloys friction stir lap welding with a zinc interlayer[J]. Journal of Materials Processing Technology, 2019, 263: 82 − 90.
  • Related Articles

    [1]LIANG Zhimin, GAO Xu, REN Zheng, WU Ziqin, WANG Liwei, WANG Dianlong. Three-dimensional reconstruction of GMAW weld pool appearance based on variational stereo matching algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 61-66. DOI: 10.12073/j.hjxb.20230224001
    [2]GAO Yanfeng, XIAO Jianhua. Curved weld-seam tracking based on information fusion of welding gun inclinations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 15-18.
    [3]HONG Bo, YAN Junguang, YANG Jiawang, LIU Xiang. A capacitive sensor for automatic weld seam tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 55-58.
    [4]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [5]GAO Yanfeng, ZHANG Hua, MAO Zhiwei, PENG Junfei. Coordinate control of broken-line welding seam tracking for wheeled robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 33-36.
    [6]WANG Kehong, CAO Hui, LIU Yong, ZHANG Deku. Binocular stereo vision with laser to reconstruct welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 1-4.
    [7]LIU Xi-wen, WANG Guo-rong, SHI Yong-hua. Image processing in welding seam tracking based on single-stripe laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 25-28,32.
    [8]CAD Hong-ming, FAN Chong-jian, WU Lin. Weld seam tracking based on micro-beam plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 80-83.
    [9]GAO Xiang-dong, LUO Xi-zhu, S. J. Na. An image centroid method for seam tracking in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 15-18.
    [10]Zhang Jiaying, Yu Jianrong, Ma Hongze, Jiang Lipei. Weld Seam Tracking System Based on Data Memeory of Chip Computer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 55-60.

Catalog

    Article views (178) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return