Advanced Search
AN Tong, CHEN Xiaoxuan, QIN Fei, DAI Yanwei, GONG Yanpeng. PBGA solder joint fatigue under temperature cycling, random vibration and combined vibration and thermal cycling loading conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 49-54. DOI: 10.12073/j.hjxb.20190417001
Citation: AN Tong, CHEN Xiaoxuan, QIN Fei, DAI Yanwei, GONG Yanpeng. PBGA solder joint fatigue under temperature cycling, random vibration and combined vibration and thermal cycling loading conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 49-54. DOI: 10.12073/j.hjxb.20190417001

PBGA solder joint fatigue under temperature cycling, random vibration and combined vibration and thermal cycling loading conditions

More Information
  • Received Date: April 16, 2019
  • Available Online: December 01, 2021
  • In this paper, temperature cycling, random vibration and combined loading tests were conducted on plastic ball grid array assemblies. The fatigue lives, the failure modes of the solder joints and the location of the failed solder joints for single loading and combined loading conditions were compared and analyzed. The results show much earlier solder joint failure for combined loading than that for either temperature cycling or pure vibration loading at room temperature. During temperature cycling and random vibration loading tests, the components at the central region have more failed solder joints than other components. The effect of the component location on the stresses and strains at the solder joints is not significant for combined loading. The primary failure mode is cracking within the bulk solder under temperature cycling, whereas the crack propagation path is along the intermetallic compound (IMC) layer for vibration loading. The solder joints subjected to combined loading exhibit both failure modes that occur for the temperature cycling and the vibration loading conditions.
  • 崔海坡, 程恩清. 不同电子封装结构的随机振动分析[J]. 焊接学报, 2017, 38(7): 91 − 94. doi: 10.12073/j.hjxb.20150606002

    Cui Haipo, Cheng Enqing. Random vibration analysis of different electronic packaging structures[J]. Transactions of the China Welding Institution, 2017, 38(7): 91 − 94. doi: 10.12073/j.hjxb.20150606002
    黄春跃, 梁颖, 邵良滨, 等. 底充胶叠层PBGA 无铅焊点随机振动应力应变分析[J]. 焊接学报, 2015, 36(10): 33 − 36.

    Huang Chunyue, Liang Ying, Shao Liangbin, et al. Stress and strain distribution of PBGA stacked lead-free solder joints with underfill with random vibration[J]. Transactions of the China Welding Institution, 2015, 36(10): 33 − 36.
    林健, 雷永平, 吴中伟, 等. 板级焊点结构的热疲劳及机械疲劳性能分析[J]. 稀有金属材料与工程. 2013; 42: 1874-1878.

    Lin Jian, Lei Yongping, Wu Zhongwei, et al. Thermal fatigue and mechanical fatigue behavior of board level solder joint[J]. Rare Metaliaterials and Engineering 2013, 42: 1874-1878.
    Zhang B, Ding H, Sheng X J. Reliability study of board-level lead-free interconnections under sequential thermal cycling and drop impact[J]. Microelectronics Reliability, 2009, 49: 530 − 536. doi: 10.1016/j.microrel.2009.02.024
    Towashiraporn P, Gall K, Subbarayan G, et al. Power cycling thermal fatigue of Sn-Pb solder joints on a chip scale package[J]. International Journal of Fatigue, 2004, 26: 497 − 510. doi: 10.1016/j.ijfatigue.2003.09.004
    Yang Q J, Wang Z P, Lim G H, et al. Reliability of PBGA assemblies under out-of-plane vibration excitations[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25: 293 − 300. doi: 10.1109/TCAPT.2002.1010020
    Liu F, Meng G. Random vibration reliability of BGA lead-free solder joint[J]. Microelectronics Reliability, 2014, 54: 226 − 232. doi: 10.1016/j.microrel.2013.08.020
    Wang H F, Zhao M, Guo Q. Vibration fatigue experiments of SMT solder joint[J]. Microelectronics Reliability, 2004, 44: 1143 − 1156. doi: 10.1016/j.microrel.2004.01.008
    Xia J, Li G Y, Li B, et al. Fatigue life prediction of package-on-package stacking assembly under random vibration loading[J]. Microelectronics Reliability, 2017, 71: 111 − 118. doi: 10.1016/j.microrel.2017.03.005
    Kim Y K, Lee S M, Hwang D S, et al. Analyses on the large size PBGA packaging reliability under random vibrations for space applications[J]. Microelectronics Reliability, 2020, 109: 113654. doi: 10.1016/j.microrel.2020.113654
    Mattila T T, Li J, Kivilahti J K. On the effects of temperature on the drop reliability of electronic component[J]. Microelectronics Reliability, 2012, 52: 165 − 179. doi: 10.1016/j.microrel.2011.07.085
    Pang J H L, Wong F L, Heng K T, et al. Combined vibration and thermal cycling fatigue analysis for SAC305 lead free solder assemblies[C]//Proceedings of 63rd Electronic Components and Technology Conference. Electronic Components and Technology Conference. Las Vegas, NV, United states, 2013, 1300 − 1307.
    Zhang H W, Liu Y, Wang J, et al. Failure study of solder joints subjected to random vibration loading at different temperatures[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(4): 2374 − 2379. doi: 10.1007/s10854-015-2693-0
  • Related Articles

    [1]WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001
    [2]LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002
    [3]DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001
    [4]FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
    [5]YU Guo, YIN Yuhuan, GAO Jiashuang, GUO Lijie. Orthogonal experiment method and BP neural networks in optimization of microbeam TIG welded GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 119-123. DOI: 10.12073/j.hjxb.2018390285
    [6]ZHANG Aihua, GAO Folai, NIU Xiaoge, LUO Huan. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 11-14.
    [7]GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36.
    [8]ZOU Yirong, WU Zheming, GUO Guilin, DU Dong. Image processing algorithm for weld seam recognition based on color analyzing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 37-40.
    [9]ZHANG Peng-xian, CHEN Jian-hong, DU Wen-jiang. Quality monitoring of resistance spot welding based on image processing of welding spot surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 57-60,64.
    [10]WANG Qing-xiang, SUN Bing-da, LI Di. Image processing method for recognizing position of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 59-63.
  • Cited by

    Periodical cited type(1)

    1. 王振民,吴健文,范文艳,叶春显. 基于SiC MOSFET的谐振软开关等离子体电源. 华南理工大学学报(自然科学版). 2019(01): 1-6 .

    Other cited types(8)

Catalog

    Article views (459) PDF downloads (34) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return