Citation: | AN Tong, CHEN Xiaoxuan, QIN Fei, DAI Yanwei, GONG Yanpeng. PBGA solder joint fatigue under temperature cycling, random vibration and combined vibration and thermal cycling loading conditions[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 49-54. DOI: 10.12073/j.hjxb.20190417001 |
崔海坡, 程恩清. 不同电子封装结构的随机振动分析[J]. 焊接学报, 2017, 38(7): 91 − 94. doi: 10.12073/j.hjxb.20150606002
Cui Haipo, Cheng Enqing. Random vibration analysis of different electronic packaging structures[J]. Transactions of the China Welding Institution, 2017, 38(7): 91 − 94. doi: 10.12073/j.hjxb.20150606002
|
黄春跃, 梁颖, 邵良滨, 等. 底充胶叠层PBGA 无铅焊点随机振动应力应变分析[J]. 焊接学报, 2015, 36(10): 33 − 36.
Huang Chunyue, Liang Ying, Shao Liangbin, et al. Stress and strain distribution of PBGA stacked lead-free solder joints with underfill with random vibration[J]. Transactions of the China Welding Institution, 2015, 36(10): 33 − 36.
|
林健, 雷永平, 吴中伟, 等. 板级焊点结构的热疲劳及机械疲劳性能分析[J]. 稀有金属材料与工程. 2013; 42: 1874-1878.
Lin Jian, Lei Yongping, Wu Zhongwei, et al. Thermal fatigue and mechanical fatigue behavior of board level solder joint[J]. Rare Metaliaterials and Engineering 2013, 42: 1874-1878.
|
Zhang B, Ding H, Sheng X J. Reliability study of board-level lead-free interconnections under sequential thermal cycling and drop impact[J]. Microelectronics Reliability, 2009, 49: 530 − 536. doi: 10.1016/j.microrel.2009.02.024
|
Towashiraporn P, Gall K, Subbarayan G, et al. Power cycling thermal fatigue of Sn-Pb solder joints on a chip scale package[J]. International Journal of Fatigue, 2004, 26: 497 − 510. doi: 10.1016/j.ijfatigue.2003.09.004
|
Yang Q J, Wang Z P, Lim G H, et al. Reliability of PBGA assemblies under out-of-plane vibration excitations[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25: 293 − 300. doi: 10.1109/TCAPT.2002.1010020
|
Liu F, Meng G. Random vibration reliability of BGA lead-free solder joint[J]. Microelectronics Reliability, 2014, 54: 226 − 232. doi: 10.1016/j.microrel.2013.08.020
|
Wang H F, Zhao M, Guo Q. Vibration fatigue experiments of SMT solder joint[J]. Microelectronics Reliability, 2004, 44: 1143 − 1156. doi: 10.1016/j.microrel.2004.01.008
|
Xia J, Li G Y, Li B, et al. Fatigue life prediction of package-on-package stacking assembly under random vibration loading[J]. Microelectronics Reliability, 2017, 71: 111 − 118. doi: 10.1016/j.microrel.2017.03.005
|
Kim Y K, Lee S M, Hwang D S, et al. Analyses on the large size PBGA packaging reliability under random vibrations for space applications[J]. Microelectronics Reliability, 2020, 109: 113654. doi: 10.1016/j.microrel.2020.113654
|
Mattila T T, Li J, Kivilahti J K. On the effects of temperature on the drop reliability of electronic component[J]. Microelectronics Reliability, 2012, 52: 165 − 179. doi: 10.1016/j.microrel.2011.07.085
|
Pang J H L, Wong F L, Heng K T, et al. Combined vibration and thermal cycling fatigue analysis for SAC305 lead free solder assemblies[C]//Proceedings of 63rd Electronic Components and Technology Conference. Electronic Components and Technology Conference. Las Vegas, NV, United states, 2013, 1300 − 1307.
|
Zhang H W, Liu Y, Wang J, et al. Failure study of solder joints subjected to random vibration loading at different temperatures[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(4): 2374 − 2379. doi: 10.1007/s10854-015-2693-0
|
[1] | WANG Tianqi, MENG Kaiquan, WANG Chuanrui. Prediction and optimization of multi-layer and multi-pass welding process parameters based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 29-37. DOI: 10.12073/j.hjxb.20230523001 |
[2] | LI Chengwen, JI Haibiao, YAN Zhaohui, LIU Zhihong, MA Jianguo, WANG Rui, WU Jiefeng. Prediction of residual stress and deformation of 316L multi-layer multi-pass welding based on GA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(5): 20-28. DOI: 10.12073/j.hjxb.20230520002 |
[3] | DONG Jianwei, HU Jianming, LUO Zhen. Quality prediction of aluminum alloy resistance spot welding based on correlation analysis and SSA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 13-18, 32. DOI: 10.12073/j.hjxb.20230226001 |
[4] | FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002 |
[5] | YU Guo, YIN Yuhuan, GAO Jiashuang, GUO Lijie. Orthogonal experiment method and BP neural networks in optimization of microbeam TIG welded GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(11): 119-123. DOI: 10.12073/j.hjxb.2018390285 |
[6] | ZHANG Aihua, GAO Folai, NIU Xiaoge, LUO Huan. Prediction of gray-spot area in rail flash butt welded joint based on BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(11): 11-14. |
[7] | GAO Xiangdong, LIN Jun, XIAO Zhenlin, CHEN Xiaohui. Recognition model of arc welding penetration using ICA-BP neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(5): 33-36. |
[8] | ZOU Yirong, WU Zheming, GUO Guilin, DU Dong. Image processing algorithm for weld seam recognition based on color analyzing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (10): 37-40. |
[9] | ZHANG Peng-xian, CHEN Jian-hong, DU Wen-jiang. Quality monitoring of resistance spot welding based on image processing of welding spot surface[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 57-60,64. |
[10] | WANG Qing-xiang, SUN Bing-da, LI Di. Image processing method for recognizing position of welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 59-63. |
1. |
王振民,吴健文,范文艳,叶春显. 基于SiC MOSFET的谐振软开关等离子体电源. 华南理工大学学报(自然科学版). 2019(01): 1-6 .
![]() |