Citation: | LI Shichun, DENG Hui, XIAO Gang, XU Wei. Effects of active sulfur powder on weld formation during high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250 |
Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laser welding and development of prevention procedures of welding defects[C]// Proceedings of SPIE 2009, the International Society for Optical Engineering, 2009, 7195: 71951R.
|
Li S, Chen G, Zhou C. Effects of welding parameters on weld geometry during high-power laser welding of thick plate[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 177 ? 182.
|
尹 燕, 王占冲, 张瑞华, 等. 活性激光电弧复合焊接法研究[J]. 机械工程学报, 2014, 50(22): 63 ? 68
Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Research on activating laser arc hybrid welding[J]. Journal of Mechanical Engineering, 2014, 50(22): 63 ? 68 |
尹 燕, 王占冲, 张瑞华, 等. 低碳钢激光预熔活性焊接法[J]. 焊接学报, 2014, 35(12): 39 ? 42
Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Study of laser pre-melting activating welding on low carbon steel[J]. Transactions of the China Welding Institution, 2014, 35(12): 39 ? 42 |
刘万强, 李彦清, 刘凤德, 等. 活性剂对激光-电弧复合焊焊缝缺陷的影响[J]. 应用激光, 2016, 36(3): 311 ? 315
Liu Wanqiang, Li Yanqing, Liu Fengde, et al. Influence of surfactant on weld defects on laser - arc hybrid welding[J]. Applied Laser, 2016, 36(3): 311 ? 315 |
Vidyarthy R S, Dwivedi D K. Activating flux tungsten inert gas welding for enhanced weld penetration[J]. Journal of Manufacturing Processes, 2016, 22: 211 ? 228.
|
Singh B. Influence of flux composition on microstructure and oxygen content of low carbon steel weldments in submerged arc welding[J]. China Welding, 2018, 27(1): 10 ? 19.
|
Ma L, Hu S, Hu B, et al. Activating flux design for laser welding of ferritic stainless steel[J]. Transactions of Tianjin University, 2014, 20(6): 429 ? 434.
|
Wei H L, Pal S, Manvatkar V, et al. Asymmetry in steel welds with dissimilar amounts of sulfur[J]. Scripta Materialia, 2015, 108: 88 ? 91.
|
Traidia A, Roger F, Schroeder J, et al. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels[J]. Journal of Materials Processing Technology, 2013, 213(7): 1128 ? 1138.
|
Mishra S, Lienert T J, Johnson M Q, et al. An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations[J]. Acta Materialia, 2008, 56: 2133 ? 2146.
|
Zhao Y, Lei Y, Shi Y. Effects of surface-active elements sulfur on flow patterns of welding pool[J]. Journal of Materials Science & Technology, 2005, 21(3): 408 ? 414.
|
Han S W, Cho W I, Na S J, et al. Influence of driving forces on weld pool dynamics in GTA and laser welding[J]. Welding in the World, 2013, 57(2): 257 ? 264.
|
Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212(1): 262 ? 275.
|
Tan Y T, Wijesinghe T L S L, Ng G K L, et al. Investigation into the influence of laser melting on the sulphide inclusions in AISI 416 stainless steel[J]. Corrosion Science, 2011, 53(12): 3950 ? 3955.
|
Li S, Deng Z, Deng H, et al. Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur[J]. Applied Surface Science, 2017, 426: 704 ? 713.
|
Myllykoski L, Suutala N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1): 453 ? 460.
|
Shankar V, Gill T P S, Mannan S L, et al. Solidification cracking in austenitic stainless steel welds[J]. Sadhana, 2003, 28(3-4): 359 ? 382.
|
[1] | XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003 |
[2] | Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002 |
[3] | LI Junzhao, SUN Qingjie, ZHANG Qinghua, LIU Yibo, ZHEN Zuyang, KANG Kexin. Research on molten pool dynamic behavior and weld formation of transverse oscillating laser welding process for various positions in space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 35-39, 61. DOI: 10.12073/j.hjxb.20210416001 |
[4] | HOU Jijun, DONG Junhui, BAI Xueyu, HAN Xu, YANG Hu. Weld shape and microstructure of TC4 laser welding with activating flux of Na2SiF6[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 67-72. DOI: 10.12073/j.hjxb.2019400265 |
[5] | ZHANG Ruihua, YIN Yan, Mizitani, Katayama. Laser aided activating TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 21-24. |
[6] | WANG Xichang, ZUO Congjin, CHAI Guoming, ZHANG Lianfeng. Effect of activating fluxes on appearance of weld in thin plate electron beam welding of nickel-base super alloy GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 83-86. |
[7] | GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73. |
[8] | SHAN Jiguo, LEI Xiang, TAN Wenda, ZHANG Hongjun, CHEN Wuzhu, REN Jialie. Welding modes and weld formation characteristics of CO2 laser welding of wrought magnesium alloy AZ31B[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 9-12. |
[9] | SUN Hao, ZHANG Zhaodong, LIU Liming. Low power laser welding of magnesium alloy with activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 49-52. |
[10] | LIU Feng yao, LIN San-bao, YANG Chun-li, WU Lin. Effect of Activating Fluxes on Weld Form in TIG Welding of Stainless Steel and Titanium Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 1-4. |