Advanced Search
LI Shichun, DENG Hui, XIAO Gang, XU Wei. Effects of active sulfur powder on weld formation during high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250
Citation: LI Shichun, DENG Hui, XIAO Gang, XU Wei. Effects of active sulfur powder on weld formation during high power laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 65-70. DOI: 10.12073/j.hjxb.2018390250

Effects of active sulfur powder on weld formation during high power laser welding

More Information
  • Received Date: January 19, 2018
  • The present work has been done to study the effects of surface-active sulfur powder on weld formation and weld microstructure during 10 kW-level high power fiber laser welding of thick plate. Observed results show that the surface-active sulfur powder increased the fluidity of molten metal and then the molten pool was elongated. When the defocused distance was negative, the active sulfur powder could increase the weld penetration and this influencing rule would not change under different welding speeds. When the defocused distance was positive, the active sulfur powder could increase the weld width. High power laser welding process could refine the grain size of weld and increase the ferrite proportion in weld. The added sulfur powder could refine the grain size and increase the ferrite proportion further.
  • Katayama S, Kawahito Y. Elucidation of phenomena in high power fiber laser welding and development of prevention procedures of welding defects[C]// Proceedings of SPIE 2009, the International Society for Optical Engineering, 2009, 7195: 71951R.
    Li S, Chen G, Zhou C. Effects of welding parameters on weld geometry during high-power laser welding of thick plate[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 177 ? 182.
    尹 燕, 王占冲, 张瑞华, 等. 活性激光电弧复合焊接法研究[J]. 机械工程学报, 2014, 50(22): 63 ? 68
    Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Research on activating laser arc hybrid welding[J]. Journal of Mechanical Engineering, 2014, 50(22): 63 ? 68
    尹 燕, 王占冲, 张瑞华, 等. 低碳钢激光预熔活性焊接法[J]. 焊接学报, 2014, 35(12): 39 ? 42
    Yin Yan, Wang Zhanchong, Zhang Ruihua, et al. Study of laser pre-melting activating welding on low carbon steel[J]. Transactions of the China Welding Institution, 2014, 35(12): 39 ? 42
    刘万强, 李彦清, 刘凤德, 等. 活性剂对激光-电弧复合焊焊缝缺陷的影响[J]. 应用激光, 2016, 36(3): 311 ? 315
    Liu Wanqiang, Li Yanqing, Liu Fengde, et al. Influence of surfactant on weld defects on laser - arc hybrid welding[J]. Applied Laser, 2016, 36(3): 311 ? 315
    Vidyarthy R S, Dwivedi D K. Activating flux tungsten inert gas welding for enhanced weld penetration[J]. Journal of Manufacturing Processes, 2016, 22: 211 ? 228.
    Singh B. Influence of flux composition on microstructure and oxygen content of low carbon steel weldments in submerged arc welding[J]. China Welding, 2018, 27(1): 10 ? 19.
    Ma L, Hu S, Hu B, et al. Activating flux design for laser welding of ferritic stainless steel[J]. Transactions of Tianjin University, 2014, 20(6): 429 ? 434.
    Wei H L, Pal S, Manvatkar V, et al. Asymmetry in steel welds with dissimilar amounts of sulfur[J]. Scripta Materialia, 2015, 108: 88 ? 91.
    Traidia A, Roger F, Schroeder J, et al. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels[J]. Journal of Materials Processing Technology, 2013, 213(7): 1128 ? 1138.
    Mishra S, Lienert T J, Johnson M Q, et al. An experimental and theoretical study of gas tungsten arc welding of stainless steel plates with different sulfur concentrations[J]. Acta Materialia, 2008, 56: 2133 ? 2146.
    Zhao Y, Lei Y, Shi Y. Effects of surface-active elements sulfur on flow patterns of welding pool[J]. Journal of Materials Science & Technology, 2005, 21(3): 408 ? 414.
    Han S W, Cho W I, Na S J, et al. Influence of driving forces on weld pool dynamics in GTA and laser welding[J]. Welding in the World, 2013, 57(2): 257 ? 264.
    Cho W I, Na S J, Thomy C, et al. Numerical simulation of molten pool dynamics in high power disk laser welding[J]. Journal of Materials Processing Technology, 2012, 212(1): 262 ? 275.
    Tan Y T, Wijesinghe T L S L, Ng G K L, et al. Investigation into the influence of laser melting on the sulphide inclusions in AISI 416 stainless steel[J]. Corrosion Science, 2011, 53(12): 3950 ? 3955.
    Li S, Deng Z, Deng H, et al. Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur[J]. Applied Surface Science, 2017, 426: 704 ? 713.
    Myllykoski L, Suutala N. Effect of solidification mode on hot ductility of austenitic stainless steel[J]. Metals Technology, 1983, 10(1): 453 ? 460.
    Shankar V, Gill T P S, Mannan S L, et al. Solidification cracking in austenitic stainless steel welds[J]. Sadhana, 2003, 28(3-4): 359 ? 382.
  • Related Articles

    [1]XIA Peiyun, FENG Xiaosong, WANG Chunming, XU Cheng, HUANG Hui, HE Jianli. Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(4): 39-44. DOI: 10.12073/j.hjxb.20220511003
    [2]Guobin ZHANG, Meng JIANG, Xi CHEN, Ao CHEN, Zhenglong LEI, Yanbin CHEN. A comparison study of characteristics of weld formation, residual stress and distortion of laser welding under atmospheric pressure and vacuum[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(8): 34-41. DOI: 10.12073/j.hjxb.20220503002
    [3]LI Junzhao, SUN Qingjie, ZHANG Qinghua, LIU Yibo, ZHEN Zuyang, KANG Kexin. Research on molten pool dynamic behavior and weld formation of transverse oscillating laser welding process for various positions in space[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(10): 35-39, 61. DOI: 10.12073/j.hjxb.20210416001
    [4]HOU Jijun, DONG Junhui, BAI Xueyu, HAN Xu, YANG Hu. Weld shape and microstructure of TC4 laser welding with activating flux of Na2SiF6[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 67-72. DOI: 10.12073/j.hjxb.2019400265
    [5]ZHANG Ruihua, YIN Yan, Mizitani, Katayama. Laser aided activating TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 21-24.
    [6]WANG Xichang, ZUO Congjin, CHAI Guoming, ZHANG Lianfeng. Effect of activating fluxes on appearance of weld in thin plate electron beam welding of nickel-base super alloy GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (2): 83-86.
    [7]GAO Zhiguo, HUANG Jian, LI Yaling, WU Yixiong. Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 69-73.
    [8]SHAN Jiguo, LEI Xiang, TAN Wenda, ZHANG Hongjun, CHEN Wuzhu, REN Jialie. Welding modes and weld formation characteristics of CO2 laser welding of wrought magnesium alloy AZ31B[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 9-12.
    [9]SUN Hao, ZHANG Zhaodong, LIU Liming. Low power laser welding of magnesium alloy with activating flux[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 49-52.
    [10]LIU Feng yao, LIN San-bao, YANG Chun-li, WU Lin. Effect of Activating Fluxes on Weld Form in TIG Welding of Stainless Steel and Titanium Alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 1-4.
  • Cited by

    Periodical cited type(5)

    1. 武晓芳,侯继军,董俊慧. 冰晶石对TC4激光焊焊缝成形和组织性能的影响. 内蒙古工业大学学报(自然科学版). 2024(05): 425-433 .
    2. 刘自刚,代锋先,陆刚,张航,沈志永. 钛合金激光焊研究现状与展望. 材料导报. 2023(S1): 354-359 .
    3. 许爱平,侯继军,董俊慧,刘军,王枝梅. 基于响应面法设计的TC4钛合金激光焊复合活性剂优化. 焊接. 2021(10): 15-24+61-62 .
    4. 梅丽芳,谢顺,严东兵,雷智钦,秦建红. 活性激光焊接不锈钢厚板熔池流场动态行为研究. 应用激光. 2021(06): 1155-1161 .
    5. 吴东江,柴东升,程波,马广义,金洙吉,雷明凯,姚振强. 脉冲激光填丝焊接薄板熔池流动行为分析. 中国科学:物理学 力学 天文学. 2020(03): 87-98 .

    Other cited types(3)

Catalog

    Article views (317) PDF downloads (1) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return