Advanced Search
HUANG Yong, LIU Lin, WANG Xinxin, LU Suzhong. A two-temperature modeling of TIG arc plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 6-10. DOI: 10.12073/j.hjxb.2018390239
Citation: HUANG Yong, LIU Lin, WANG Xinxin, LU Suzhong. A two-temperature modeling of TIG arc plasma[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(10): 6-10. DOI: 10.12073/j.hjxb.2018390239

A two-temperature modeling of TIG arc plasma

More Information
  • Received Date: June 13, 2017
  • A two-dimensional axisymmetric two-temperature mathematical model for TIG arc plasma is established based on the conservation equations of mass, momentum, electron energy and heavy particle energy, as well as Maxwell equations. The thermodynamic and transport parameters of the plasma are taken as a function of electron temperature and heavy particle temperature. The distributions of electron temperature, heavy particle temperature, pressure and velocity for TIG arc are obtained by FLUENT software. The results show that the arc plasma presents a bell shape. Temperatures of electron and heavy particle in the arc plasma show a near-LTE behavior in the core region. While a large deviation from LTE is observed in the near-electrode regions and outside the fringe of arc column, the plasma has a strong non-equilibrium characteristic.
  • Hsu K C, Etemadi K, Pfender E. Study of the free burning high intensity argon arc[J]. Journal of Applied Physics, 1983, 54(3): 1293 ? 1301.
    Kaddani A, Zahrai S, Delalondre C, et al. Three-dimensional modeling of unsteady high-pressure arcs in argon[J]. Journal of Physics D: Applied Physics, 1995, 28(11): 2294 ? 2305.
    Wu C S, Ushio M, Tanaka M. Analysis of the TIG welding arc behavior[J]. Computational Material Science, 1997, 7(3): 308 ? 314.
    樊 丁, 黄 勇, 张瑞华, 等. 非平衡等离子体运输系数的数值分析[J]. 焊接学报, 2006, 27(2): 31 ? 34
    Fan Ding, Huang Yong, Zhang Ruihua, et al. Numerical analysis of the transport properties for no-equilibrim plasma[J]. Transactions of the China Welding Institution, 2006, 27(2): 31 ? 34
    王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算[J]. 物理学报, 2012, 61(19): 317 ? 323
    Wang Haixing, Sun Surong, Chen Shiqiang. Calculation of two-temperature transport coefficients of helium plasma[J]. Acta Physica Sinica, 2012, 61(19): 317 ? 323
    Hsu K C, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc[J]. Journal of Applied Physics, 1983, 54(8): 4359 ? 4366.
    李和平, 陈 熙. 双温度通道电弧等离子体二维数值模拟[J]. 工程热物理学报, 2006, 27(3): 481 ? 483
    Li Heping, Chen Xi. Two-dimensional two-temperature simulation of plasma tube arcs[J]. Journal of Engineering Thermophysics, 2006, 27(3): 481 ? 483
    王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1): 54 ? 62
    Wang Lijun, Jia Shenli, Shi Zongqian, et al. Numerical simulation of effect of arc current and axial magnetic field on low current vacuum arc characteristics[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54 ? 62
    钱海洋, 吴 彬. 直流电弧等离子体双温度化学非平衡数值模拟[J]. 核聚变与等离子体物理, 2011, 31(2): 186 ? 192
    Qian Haiyang, Wu Bin. A two-temperature chemical non-equilibrium modeling of DC arc plasma[J]. Nuclear Fusion and Plasma Physics, 2011, 31(2): 186 ? 192
    Tashiro S, Tanaka M. Two-temperature plasma modeling of argon gas tungsten arcs[J]. Transactions of JWRI, 2008, 37(1): 7 ? 11.
    张晓宁, 李和平, Murphy A B, 等. 用于非平衡热等离子体数值模拟的物理数学模型[J]. 高电压技术, 2013, 39(7): 1640 ? 1648
    Zhang Xiaoning, Li Heping, Murphy A B, et al. Physical-mathematical model used for simulations of non-equilibrium thermal plasmas[J]. High Voltage Engineering, 2013, 39(7): 1640 ? 1648
    Mitchner M, Kruger C H. Partially ionized gases [M].New York: Wiley, 1973.
    Dresvin S V, Donskoi A V, Goldfarb V M, et al. Physics and technology of low-temperature plasmas[M]. Iowa City, IA:University of Iowa Press, 1977.
    Baeva M, Kozakov R, Gorchakov S, et al. Two-temperature chemically non-equilibrium modelling of transferred arcs[J]. Plasma Sources Science and Technology, 2012, 21(5): 055027(13pp).
    Haidar J. Non-equilibrium modelling of transferred arcs[J]. Journal of Physics D: Applied Physics, 1999, 32(3): 263 ? 272.
  • Related Articles

    [1]CHEN Xinghui, ZHANG Hongshen. Process parameters optimization of 5083 aluminum alloy FSW joint based on principal component analysis and grey correlation analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 62-69. DOI: 10.12073/j.hjxb.20220623001
    [2]LI Guowei, LIANG Yahong, CHEN Furong, HAN Yongquan. Welding parameters optimization and mechanical properties analysis of PVPPA welded high-strength aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 86-92. DOI: 10.12073/j.hjxb.2019400268
    [3]ZENG Kai, HE Xiaocong, XING Baoying. Effect of the degree of rivet opening on the rigidity of the interlock in self-piercing riveting joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 143-147. DOI: 10.12073/j.hjxb.2019400169
    [4]ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Parameters optimization of small scale spot welding for titanium alloy via Taguchi experiment and grey relational analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 101-104. DOI: 10.12073/j.hjxb.2018390132
    [5]ZHAO Dawei1, LIANG Dongjie2, WANG Yuanxun3. Research on process parameters optimization of small scale resistance spot welding via regression analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 79-83. DOI: 10.12073/j.hjxb.2018390100
    [6]REN Weibin1,2, DONG Shiyun2, XU Binshi2, ZHOU Jinyu1, WANG Yujiang2. Design and implementation of laser refabrication forming closed-loop controlling for compressor blade[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 11-15. DOI: 10.12073/j.hjxb.2018390059
    [7]WU Bintao, MIAO Yugang, HAN Duanfeng, ZHOU Yue. Analysis of single supply AC twin-electrode GTAW process mechanism of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(2): 55-58.
    [8]Cui Kun, Dai Ming, Wu lin, Sun Lunqiang. Autonomous Path Planning for Arc Welding Robot with Redundant Degree of Freedom[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (3): 64-70.
    [9]Xu Jida, Cui Daming, Ge Dezhen. AUTOMATIC WELDING MACHINE WITH FOUR DEGREES OF FREEDOM FOR WELDING NOZZLES INTO VESSELS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1990, (3): 162-168.
    [10]Pan Jiluan, Zhang Renhao, Ou Zhiming, Wu Zhiqiang. CLOSED LOOP SYSTEM FOR CONTROLLING PULSED MIG WELDING ARC[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1985, (2): 91-98.
  • Cited by

    Periodical cited type(5)

    1. 孟祥超,孙有平,何江美,周勇,谢尚恒. ZL114A和6061异种铝合金激光焊接工艺及接头显微组织和力学性能研究. 矿冶工程. 2023(03): 160-164 .
    2. 彭进,王星星,倪增磊,张占哲,李俐群. 焊丝熔化方式对激光焊接过程的影响. 焊接学报. 2020(02): 64-67+100 . 本站查看
    3. 路林,刘玥扬,矫全宇. 汽车用6系铝合金及其焊接方法综述. 焊接技术. 2020(06): 1-4 .
    4. 孙力,王成业. 基于脉冲激光的建筑材料缺陷无损检测方法. 激光杂志. 2019(09): 69-72 .
    5. 成健,黄易,杨新龙,李帅,汪于涛,刘顿. 动力电池用铝合金准连续脉冲激光焊接特性研究. 应用激光. 2018(06): 953-958 .

    Other cited types(7)

Catalog

    Article views (369) PDF downloads (0) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return