Advanced Search
LIANG Xiaobo, LI Xiaoyan, YAO Peng, LI Yang. Microstructural evolution of Cu/Sn/Cu joints and effect of temperature on three-dimensional morphology of IMCs in packaging technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 49-54. DOI: 10.12073/j.hjxb.2018390223
Citation: LIANG Xiaobo, LI Xiaoyan, YAO Peng, LI Yang. Microstructural evolution of Cu/Sn/Cu joints and effect of temperature on three-dimensional morphology of IMCs in packaging technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(9): 49-54. DOI: 10.12073/j.hjxb.2018390223

Microstructural evolution of Cu/Sn/Cu joints and effect of temperature on three-dimensional morphology of IMCs in packaging technology

More Information
  • Received Date: April 29, 2017
  • A 4 μm thick Sn film was deposited on the copper substrate by electroplating. Two copper substrates with electroplated Sn were constituted of a Cu/Sn/Cu structure. 240℃ and 1 N were chosen as soldering temperature and pressure to be soldered for different time to investigate the law of microstructural evolution of IMCs. The three-dimensional morphology of Cu6Sn5 and Cu3Sn under different soldering temperature(240, 270, 300℃) were fabricated, Investigate the effect of temperature on three-dimensional morphology. The results show Cu6Sn5 was planar after soldered for 30 min and turned into scallop-like with the increase of soldering time. Cu3Sn in the bottom of scallop was thicker than that in bottom of scallop on both sides. Sn was reacted with the increase of soldering time, Cu6Sn5 in the two side merged into a whole gradually. Increase more soldering time, Cu6Sn5 continued to be transformed into Cu3Sn. The three-dimensional of Cu6Sn5 transformed from polyhedron shape to procumbent and the size of Cu3Sn grains decreased gradually with the increase of soldering temperature.
  • 尹立孟, 杨艳, 刘亮岐. 电子封装微互连焊点力学行为的尺寸效应[J]. 金属学报, 2009, 45(4):422-427 Yin Limeng, Yang Yan, Liu Liangqi. Size effect of mechanical behavior of miniature solder joint interconnections in electronic packaging[J]. Acta Metallurgica Sinica, 2009, 45(4):422-427, doi: 10.3321/j.issn:0412-1961.2009.04.008
    Shigetou A, Itoh T, Sawada K, et al. Bumpless interconnect of 6μm pitch Cu electrodes at room temperature[J]. Electronic Components & Technology Conference, 2008, 31(3):1405-1409.
    Mo L, Wu F, Liu C. Growth kinetics of IMCs in Cu-Sn intermetallic joints during isothermal soldering process[J]. Electronic Components & Technology Conference, 2015(3):1854-1858.
    Labie R, Limaye P, Lee K W, et al. Reliability testing of Cu-Sn intermetallic micro-bump interconnections for 3D-device stacking[C]//Berlin:2010 Electronic System-Integration Technology Conference (ESTC), 2010:1-5.
    Huang Z, Jones R E, Jain A. Experimental investigation of electromigration failure in Cu-Sn-Cu micropads in 3D integrated circuits[J]. Microelectronic Engineering, 2014, 122(25):46-51.
    Luu T T, Duan A, KE Aasmundtveit, et al. Optimized Cu-Sn wafer-level bonding using intermetallic phase characterization[J]. Journal of Electronic Materials, 2013, 42(12):3582-3592. doi: 10.1007/s11664-013-2711-z
    杨东升. 三维封装芯片固液互扩散低温键合机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
    Wieland R, Klumpp A, Ramm P. 3D system integration for high density interconnects[J]. Micro Optoelectronic Materials, 2007(03-07):64-68.
    吕亚平, 刘孝刚, 陈明祥, 等. 含TSV结构的3D封装多层堆叠Cu/Sn键合技术[J]. 半导体技术, 2014, 39(1):64-70 Lü Yaping, Liu Xiaogang, Chen Mingxiang, et al. Multilayer stack Cu/Sn bonding technology for 3D packaging with TSV[J]. Semiconductor Technology, 2014, 39(1):64-70
    Lee B, Park J, Jeon S, et al. A study on the bonding process of Cu bump/Sn/Cu bump bonding structure for 3D packaging applications[J]. Journal of The Electrochemical Society, 2010, 157(4):H420-H424. doi: 10.1149/1.3301931
    Cao Y, Ning W, Luo L. Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2009, 32(3):125-132. doi: 10.1109/TEPM.2009.2021766
    Li J F, Agyakwa P A, Johnson C M. Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process[J]. Acta Materialia, 2011, 59(3):1198-1211. doi: 10.1016/j.actamat.2010.10.053
    Ma D, Wang W D, Lahiri S K. Scallop formation and dissolution of Cu-Sn intermetallic compound during solder reflow[J]. Journal of Applied Physics, 2002, 91(5):3312-3317. doi: 10.1063/1.1445283
    Gusak A M, Tu K N. Kinetic theory of flux-driven ripening[J]. Physical Review B, 2002, 66(11):115403. doi: 10.1103/PhysRevB.66.115403
  • Related Articles

    [1]GUI Xiaoyan, ZHANG Yanxi, YOU Deyong, GAO Xiangdong. Numerical simulation and test for influence of laser arc hybrid welding sequence on 304 stainless steel T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 34-39. DOI: 10.12073/j.hjxb.20210324005
    [2]QI Haibo, LI Jiangfei, LIANG Bingchen, REN Deliang. Effects of welding sequence on welding residual deformation in multi-welds plate dryer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 67-70.
    [3]DONG Wenchao, LU Shanping, LI Dianzhong. Effect of welding sequence on welding distortion of large-sized thin armor steel structure[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 43-46,50.
    [4]WANG Ping, WANG Qiang, LIU Xuesong, FANG Hongyuan. Welding sequence optimization for high-speed rail floor based on FEM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 45-48.
    [5]LI Chaowen, WANG Yong, HAN Tao. Effect of welding sequences on welding residual stress and distortion of T-joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (10): 37-40.
    [6]ZHANG Xueqiu, YANG Jianguo, LIU Xuesong, CHEN Xuhui, FANG Hongyuan, QU Shen. Finite element anlysis of welding sequence impact on blisk roundness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (3): 57-60.
    [7]ZHOU Guangtao, LIU Xuesong, YAN Dejun, FANG Hongyuan. Prediction for welding deformation reducing by welding sequence optimization of upper plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (9): 109-112.
    [8]YAN Dejun, LIU Xuesong, ZHOU Guangtao, FANG Hongyuan. Numerical analysis on optimizing welding sequence of large-sized bottom structure for controlling welding distortion[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 55-58.
    [9]ZHANG li-guo, JI Shu-de, FANG Hong-yuan, LIU Xue-song. Influence of welding sequence of subsection welding on residual stress of T joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 109-112.
    [10]CUI Xiao-fang, YUE Hong-jie, ZHAO Wen-zhong, MA Jun. Study of different welding sequences in the bogie frame of the high-speed locomotive[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (1): 101-104,108.
  • Cited by

    Periodical cited type(9)

    1. 金鑫,祝哮,唐鸿洋,田春雨,刘东利. 焊后热处理对6061-T6铝合金激光-MIG复合焊接头力学性能及组织的影响. 铝加工. 2024(06): 64-68 .
    2. 陈清勇,王桂兰,梁立业,张海鸥. ZL114A铝合金电弧-激光微铸锻复合增材制造组织与力学性能研究. 热加工工艺. 2023(07): 125-129 .
    3. 杨文静,权银洙,柴禄,滕俊飞. 6A02铝合金接触反应钎焊接头组织及抗剪强度. 焊接. 2023(06): 31-37 .
    4. 周勇,孙有平,何江美,李旺珍,谢梓文. 激光功率对铝/钢激光对接熔钎焊接头组织与性能的影响. 机械工程材料. 2023(07): 22-30 .
    5. 周金旭,康铭,田春雨,李哲,陈德军,恒俊楠. 焊后热处理对6063铝合金激光填丝焊接头组织与性能的影响. 失效分析与预防. 2022(04): 242-246 .
    6. 陈超,孙国瑞,冯天亭,范成磊,张慧婧. 层间高速摩擦复合WAAM铝合金构件组织与力学性能. 焊接学报. 2022(09): 38-43+115 . 本站查看
    7. 周思鹏,孙有平,何江美,胡一杰,杨春洋. 2524铝合金光纤激光焊接接头的组织与力学性能. 轻合金加工技术. 2021(03): 60-68 .
    8. 周思鹏,孙有平,何江美,杨春洋. 焊接速度对2524铝合金光纤激光焊接头组织及性能的影响. 特种铸造及有色合金. 2020(10): 1134-1138 .
    9. 齐岳峰,王峰,任勇彬,韩天棋. 显微硬度在铝合金钎焊性能分析中的应用. 物理测试. 2019(05): 5-8 .

    Other cited types(4)

Catalog

    Article views (653) PDF downloads (196) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return