Advanced Search
GONG Qingtao1, HU Guangxu2, MIAO Yugang1, MENG Mei1, ZHENG Hong3. Numerical analysis of multi-pass welding residual stresses based on processes chain simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 12-16. DOI: 10.12073/j.hjxb.2018390166
Citation: GONG Qingtao1, HU Guangxu2, MIAO Yugang1, MENG Mei1, ZHENG Hong3. Numerical analysis of multi-pass welding residual stresses based on processes chain simulation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(7): 12-16. DOI: 10.12073/j.hjxb.2018390166

Numerical analysis of multi-pass welding residual stresses based on processes chain simulation

More Information
  • Received Date: March 27, 2018
  • Based on processes chain simulation technology, a gradually added filler element method was applied for modeling multi-pass welding and the simulation was achieved step by step with coupled thermal-mechanical finite element method. A research part of multi-pass welding was simulated by both the chain simulation technology and the traditional method. To compare the two simulations, convergence for the chain simulation technology is better and its results of longitudinal residual stresses are more accuracy. Meanwhile, the stress evolution history under the thermal-mechanical activities of multi-pass welding was analyzed, and the principle of longitudinal stresses changing under multi-thermal cycles was revealed.
  • Choa J R, Lee B Y, Moonb Y H, et al. Investigation of residual stress and post weld heat treatment ofmulti-pass welds by finite element method and experiments[J]. Journal of Materials Processing Technology, 2004, 156:1690-1695
    Elcoate C D, Dennis R J, Bouchard P J, et al. Three dimensional multi-pass repair weld simulations[J]. International Journal of Pressure Vessels and Piping, 2005,82:244-257[DOI: 10.1016/j.ijpvp.2004.08.003]
    Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006, 37:269-277[DOI: 10.1016/j.commatsci.2005.07.007]
    Deng D, Murakawa H, Liang W.Numerical and experimental investigations on welding residual stressin multi-pass butt-welded austenitic stainless steel pipe[J]. Computational Materials Science, 2008, 42:234-244[DOI: 10.1016/j.commatsci.2007.07.009]
    Ram K, Siegele D. 3D modelling of a multi-pass dissimilar tube welding and post weld heattreatment of nickel based alloy and chromium steel[J]. International Journal of Pressure Vessels and Piping, 2010, 87:643-649[DOI: 10.1016/j.ijpvp.2010.08.010]
    Heinze C, Schwenk C, Rethmeier M. Numerical calculation of residual stress development of multi-pass gasmetal arc welding[J]. Journal of Constructional Steel Research, 2012, 72:12-19[DOI: 10.1016/j.jcsr.2011.08.011]
    Suo L, Sendong Ra, Yanbin Z, et al. Numerical investigation of formation mechanism of welding residualstress in P92 steel multi-pass joints[J]. Journal of Materials Processing Technology, 2017, 244:240-252[DOI: 10.1016/j.jmatprotec.2017.01.033]
    Venkata K A, Truman C E, Wimpory R C, et al. Numerical simulation of a three-pass TIG welding using finite elementmethod with validation from measurements[J]. International Journal of Pressure Vessels and Piping, 2017, 1-12.
    陈章兰, 熊云峰, 李宗民. 船用低温高强钢三维多层焊接变形有限元模拟[J]. 焊接学报. 2008. 29(8):109-112 Chen Zhanglan, Xiong Yufeng, Li Zongmin. 3D finite element simulation on distortion distribution in multi-layers welding of EH36[J]. Transactions of the China Welding Institution, 2008. 29(8):109-112.[DOI: 10.3321/j.issn:0253-360X.2008.08.028]
    孙加民, 邓德安, 叶延洪, 等. 用瞬间热源模拟Q390高强钢厚板多层多道焊T形接头的焊接残余应力[J]. 焊接学报. 2016. 37(7):31-38 Sun Jiamin, Deng Dean, Ye Yanhong, et al. Multi-pass welding residual stresses of Q390 high stress steel's T connection struchure of based on[J]. Transactions of the China Welding Institution, 2016. 37(7):31-38.
    胡广旭, 孟梅, 刘冰. 基于后处理再造型的连续制造工艺过程仿真技术[J]. 计算机辅助工程, 2015, 24(2):47-52 Hu Guangxu, Meng Mei, Liu Bing. Simulation technology for continuous manufacturing processbased on post-processing re-modeling[J]. Computer Aided Engineering, 2015, 24(2):47-52
    Afazov S M, Becker A A, Hyde T H. Development of a finite elementdata exchange system for chain simulation of manufacturing processes[J].Advances in Engineering Software, 2012, 47:104-113[DOI: 10.1016/j.advengsoft.2011.12.011]
    胡广旭. 熔化焊热-力耦合智能数值模拟方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
  • Related Articles

    [1]XU Kai, WU Pengbo, LI Linlin, HUANG Ruisheng, LIANG Xiaomei, LIANG Yu. Microstructure and performance analysis of laser-MIG hybrid welding joints of aluminum alloy with multi-stranded wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 43-49. DOI: 10.12073/j.hjxb.20210813001
    [2]XU Kai, WU Pengbo, LIANG Xiaomei, CHEN Jian, HUANG Ruisheng. Analysis of characteristics of aluminum alloy laser multi stranded welding wire MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(1): 16-23. DOI: 10.12073/j.hjxb.20201120003
    [3]ZHU Zongtao, WANG Xuefei, YANG Xiaoyi, GAO Jian. Droplet transfer in aluminum alloy laser-MIG hybrid welding coupled by high frequency pulses and its cladding characteristics[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 39-44.
    [4]ZHANG Nan, DONG Xianchun, PAN Hui, ZHANG Jun. Mechanical behavior of welded joint of a high Ti-Nb content microalloyed high-strength steel before and after drawing temper treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(5): 93-98.
    [5]WEI Shouzheng, LI Yajiang, WANG Juan, ZHANG Pengfei. Microstructure characteristics of RuTi/1060Al fusion-brazed joint by pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(4): 63-66.
    [6]DONG Xianchun, ZHANG Nan, CHEN Yanqing, ZHANG Xi, MU Shukun, ZHANG Feihu, SHENG Hai. Welded joint strength and analysis for HAZ softening behavior of high Ti and Nb precipitation strengthened high strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 72-76.
    [7]ZHENG Huaibei, YE Xiaoning, ZHANG Xuefeng, JIANG Laizhu, LIU Zhenyu, WANG Guodong. Microstructure transformation,grain growth and precipitated phase of 12%Cr ferritic stainless steel in coarse grain zone[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (6): 37-40.
    [8]HUANG Jiwu, YIN Zhimin, NIE Bo, XIAO Jin, CHEN Jiqian. X-ray diffraction analysis of 7A52 aluminum alloy MIG welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (12): 13-17.
    [9]Fan Ding, K. Nakata, M. Ushio. Study of YAG Laser-Pulsed MIG Hybrid Welding Process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 81-83.
    [10]Ding Wei, Hou Qixian, Dong Lingxuan, Wang Yuanliang. Arc Stability of Aluminium Alloy Pulsed MIG Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1996, (2): 116-121.
  • Cited by

    Periodical cited type(13)

    1. 徐光霈,魏耀光,冉洸奇,陈瑶,李桓. 2219/5A06异种铝合金脉冲VP-TIG焊工艺. 焊接学报. 2024(02): 67-74+132-133 . 本站查看
    2. 贾蒙,储继君,徐锴,吕晓春,姜英龙,陈鹏达. 不锈钢绞股焊丝MAG焊熔滴过渡特征分析. 热加工工艺. 2023(13): 142-147 .
    3. 刘自刚,徐睦忠,李洋,代锋先,乐望赟. 铝合金激光-MIG复合焊研究现状与展望. 材料导报. 2023(S2): 370-374 .
    4. 吴玲,赵磊,于瑞海,周喆,宋利刚,于树洪. A356铸件与6082型材的焊接工艺. 焊接. 2022(01): 34-40 .
    5. 徐锴,武鹏博,黄瑞生,梁裕,刘平礼,徐亦楠. 《绞股焊丝》团体标准制定概述. 电焊机. 2022(03): 1-10 .
    6. 韩晓辉,李帅贞,吴来军,檀财旺,李刚卿,宋晓国. 表层组织状态对6005A铝合金MIG焊接头液化裂纹及疲劳性能的影响. 焊接学报. 2022(05): 14-20+114 . 本站查看
    7. 张华伟,于红梅. 铝合金车身板材焊缝组织缺陷分析. 金属功能材料. 2022(03): 47-52 .
    8. 徐锴,武鹏博,李琳琳,黄瑞生,梁晓梅,梁裕. 铝合金激光-多股绞合焊丝MIG复合焊接头组织与性能分析. 焊接学报. 2022(11): 43-49+165 . 本站查看
    9. 徐锴,武鹏博,梁晓梅,陈健,黄瑞生. 铝合金激光-多股绞合焊丝MIG复合焊特性分析. 焊接学报. 2021(01): 16-23+98 . 本站查看
    10. 张月来,彭章祝,常茂椿,胡龙,潘国昌,徐博. 复杂铝合金焊接结构的残余应力数值模拟分析. 焊接学报. 2021(03): 91-96+104 . 本站查看
    11. 雷玉成,崔展祥,路广遥,姚亦强,张雪宁. 超声电弧对6061铝合金MIG焊接头组织和性能的影响. 焊接学报. 2020(02): 33-38+98-99 . 本站查看
    12. 单龙,付雷,孙进,卢长煜,方洪渊. 铝合金风机叶轮焊接结构强度校核方法分析. 焊接. 2020(03): 5-9+65 .
    13. 徐锴,武鹏博,黄瑞生,梁晓梅,梁裕. 多股绞合焊丝研究与应用进展. 焊接. 2020(07): 6-18+61 .

    Other cited types(6)

Catalog

    Article views (753) PDF downloads (169) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return