Advanced Search
CHEN Fu-rong, HUO Li-xing, ZHNAG Yu-feng, LIU Fang-jun, CHEN Gang. Finite element calculation of residual stresses on electron beam welded BT20 plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 61-64,70.
Citation: CHEN Fu-rong, HUO Li-xing, ZHNAG Yu-feng, LIU Fang-jun, CHEN Gang. Finite element calculation of residual stresses on electron beam welded BT20 plates[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 61-64,70.

Finite element calculation of residual stresses on electron beam welded BT20 plates

More Information
  • Received Date: June 01, 2003
  • The welding temperature field, the distributions of residual stresses as welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) of BT20 plates have been successfully simulated with a three-dimensional finite-element model(FEM). In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of titanium alloy is equal to 60%~70% of its yield strength σs. The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to the joints in AW conditions. The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam weling on the distribution of welding residual stresses in thin plates of BT20 has been analyzed in detail.
  • Related Articles

    [1]FAN Ding, HUANG Zicheng, HUANG Jiankang, WANG Xinxin, HAO Zhenni, HUANG Yong. Numerical simulation of the effects of oxygen as active element on weld transportation behavior in arc assisted activating TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(3): 62-66.
    [2]FAN Ding, HUANG Zicheng, HUANG Jiankang, HAO Zhenni, WANG Xinxin, HUANG Yong. Oxygen distribution and numerical simulation of weld pool profiles during arc assisted activating TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(2): 38-42.
    [3]SONG Jiaqiang, XIAO Jun, ZHANG Guangjun, WU Lin. Numerical simulation of free metal transfer of low current CO2 arc welding based on Surface Evolver[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (5): 75-78,98.
    [4]LIU Wei, HE Jingshan, WU Qingsheng, ZHANG Binggang. Numerical simulation of effect of arc force on shape of liquid surface of TIG welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (7): 69-71,76.
    [5]LI Zhining, CHANG Baohua, DU Dong, WANG Li. Numerical simulation on temperature field in laser-plasma arc hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 29-33.
    [6]HE Jingshan, LIU Wei, ZHNG Binggang, WU Qingsheng. Numerical simulation on effect of TIG welding arc on liquid surface of full-penetrated molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (6): 10-12.
    [7]LU Feng-gui, TANG Xin-hua, LI Shao-qing, YAO Shun, LOU Song-nian. Stationary numerical simulation on coupling interaction between TIG welding arc and pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (9): 69-72,76.
    [8]WU Yan-gao, LI Wu-shen, ZOU Hong-jun, FENG Ling-zhi. State-of-the-art of Numerical Simulation In Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (3): 89-92.
    [9]ZHU Yuan-xiang, ZHANG Xiao-fei, Yang bing, Li xiao-mei. The Numeric Simulation of Weld Residual Stress of Several Weld-Repaired Based on Finite Element[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (1): 65-68.
    [10]HE Jing-shan, YANG Chun-li, LIN San-bao, WANG Qi-long. Numerical Simulation of 3D Liquid Surface Shape for Partial Penetrated Weld Pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (4): 9-12.

Catalog

    Article views (344) PDF downloads (66) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return