Citation: | DENG Caiyan, YIN Tinghui, GONG Baoming. Properties of very-high-cycle fatigue of TC11 titanium alloy EBW welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 23-26. DOI: 10.12073/j.hjxb.2018390088 |
Bathias C. There is no infinite fatigue life in metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 559-565.[2] Bathias C, Drouillac L, Francois P L. How and why the fatigue S-N curve does not approach a horizontal asymptote[J]. International Journal of Fatigue, 2001, 23: 143-151.[3] 左景辉, 王中光, 韩恩厚. Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709.Zuo Jinghui, Wang Zhongguang, Han Enhou. Ultra-high cycle fatigue behavior of Ti-6Al-4V alloy[J]. Acta Metallurgica Sinica, 2007, 43(7): 705-709.[4] 王清远. 超声加速疲劳实验研究[J]. 四川大学学报, 2002, 34(3): 6-11.Wang Qingyuan. Accelerated fatigue testing by ultrasonic loading[J]. Journal of Sichuan University (Engineering Science Edition), 2002, 34(3): 6-11.[5] Spriestersbach D, Grad P, Kerscher E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime[J]. International Journal of Fatigue, 2014, 64: 114-120.[6] Wang Q Y, Kawagoishi N, Chen Q. Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes[J]. International Journal of Fatigue, 2006, 28: 1572-1576.[7] 吴良晨, 王东坡, 邓彩艳, 等. 超长寿命区间16Mn钢焊接接头疲劳性能[J]. 焊接学报, 2008, 29(3): 117-120.Wu Liangchen, Wang Dongpo, Deng Caiyan, et al. Fatigue properties of welded joints of 16Mn steel in super long life region[J]. Transactions of the China Welding Institution, 2008, 29(3): 117-120.[8] 何 超, 崔仕明, 刘永杰, 等. 气孔对铝合金焊接接头超长疲劳寿命的影响[J]. 焊接学报, 2014, 35(11): 18-22.He Chao, Cui Shiming, Liu Yongjie, et al. Effect of pore on super long fatigue life of aluminum alloy welded joint[J]. Transactions of the China Welding Institution, 2014, 35(11): 18-22.[9] Liu X L, Sun C Q, Hong Y S. Effects of stress ratio on high-cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy[J]. Materials Science & Engineering A, 2015, 622: 228-235.[10] 吴良晨. 超声频分量双周疲劳载荷作用下焊接接头的疲劳性能[D]. 天津: 天津大学, 2008.[11] 王世清, 刘金合, 温国栋, 等. 10 mm厚TC11钛合金电子束焊接组织性能和残余应力[J]. 稀有金属材料与工程, 2013, 42(6): 1150-1153.Wang Shiqing, Liu Jinhe, Wen Guodong, et al. Microstructure, mechanical properties and residual stress of electron beam welded TC11 alloy joint of 10 mm thickness[J]. Rare Metal Materials and Engineering, 2013, 42(6): 1150-1153.[12] 王利发, 刘建中, 胡本润. TA15钛合金电子束焊焊接接头力学性能[J]. 焊接学报, 2007, 28(1): 97-100.Wang Lifa, Liu Jianzhong, Hu Benrun. Mechanical properties of TA15 titanium alloy electron beam welded joint[J]. Transactions of the China Welding Institution, 2007, 28(1): 97-100.
|
[1] | ZHANG Zihao, ZENG Kai, ZHANG Hongshen, XING Baoying, DING Yanfang, TIAN Hai. Multiple regression model of process for aluminum alloy self-piercing riveting based on ball-shaped die[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(7): 59-66. DOI: 10.12073/j.hjxb.20230715003 |
[2] | YANG Dongsheng, ZHANG He, FENG Jiayun, SA Zicheng, WANG Chenxi, TIAN Yanhong. Research progress on micro/nano joining technologies and failure behaviors in electronic packaging[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(11): 126-136. DOI: 10.12073/j.hjxb.20220702003 |
[3] | YANG Jin, XING Baoying, HE Xiaocong, ZENG Kai, ZHOU Lu. Analysis of competitive failure mechanisms and mechanical properties of self-piercing riveted joints in corrosive environments[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 69-75. DOI: 10.12073/j.hjxb.20211024002 |
[4] | HUANG Zhichao, SONG Tianci, LAI Jiamei. Fatigue property and failure mechanism of self piercing riveted joints of TA1 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(3): 41-46. DOI: 10.12073/j.hjxb.2019400069 |
[5] | LU Yi, HE Xiaocong, XING Baoying, ZHANG Xianlian. Effect of annealing treatment on the fatigue behavior of titanium alloy self-piecing riveted joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 124-128. DOI: 10.12073/j.hjxb.2018380083 |
[6] | ZHAO Lun, HE Xiaocong, ZHANG Xianlian. Fretting wear mechanism and fatigue behavior of titanium alloy self-piercing riveted joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(7): 88-92. |
[7] | XING Baoying, HE Xiaocong, WANG Yuqi, LIU Fulong. Fatigue properties and failure mechanisms of self-piercing riveted joints in aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 50-54. |
[8] | CUI Shaopeng, ZHU Hao, GUO Zhu, ZHAO Yipeng. Deformation and failure behavior of friction stir weld joint of 7075 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 27-30. |
[9] | XING Baoying, HE Xiaocong, WANG Yuqi, DENG Chengjiang. Static mechanical properties and failure mechanism of self-piercing riveted aluminum alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(9): 47-50. |
[10] | WANG Bin, HAO Chuan-yong, ZHANG Jin-song, ZHANG Hong-yan. Method of self-piercing riveting and properties of its joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (5): 43-46. |
1. |
李军. 燃气轮机钢表面激光熔覆Sn-Cu-Sb涂层的组织和拉伸断口形貌. 材料保护. 2019(06): 75-78 .
![]() |