Advanced Search
CAO Xianlei1,2,3, SHEN Hao1, XU Yong1, ZHONG Wen1. Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 36-41. DOI: 10.12073/j.hjxb.2018390064
Citation: CAO Xianlei1,2,3, SHEN Hao1, XU Yong1, ZHONG Wen1. Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 36-41. DOI: 10.12073/j.hjxb.2018390064

Experimental investigation of residual stress in welded Q800 high strength steel I-shaped cross-section

More Information
  • Received Date: September 16, 2016
  • An experimental study is conducted to investigate the longitude residual stress in Q800 high strength steel welded I-sections using the sectioning method. The effect of the width-thickness ratio of web and flange on the distribution of the residual stress, including the interaction and stress equilibrium, was analyzed. And the models of estimating the distribution and magnitude of residual stress are proposed. The results show that the distribution of the residual stress of Q800 high strength steel I-shaped cross-section is similar to that of ordinary-strength steel. The tensile stress which locates around the welding zones and the edges of flange presents an irregular relation with the changes of width-thickness ratio of plates. The constant compressive stress distributes in the middle portion of the projecting flange and web, and decreases as the width-thickness ratio of plates increases. The remaining parts are the transition regions from tensile stress to compressive stress. The residual stress in the flange and web can satisfy the self-equilibrium condition, and no interaction between the flange and web exists.
  • 朱志明, 范开果, 刘 晗, 等. 残余应力对钢轨焊接接头落锤试验性能的影响[J]. 焊接学报, 2017, 38(4): 55-58.Zhu Zhimin, Fan Kaiguo, Liu Han,et al. Influence of residual stress on drop-weight test performance of rail welded joint[J]. Transactions of the China Welding Institution, 2017, 38(4): 55-58.[2] Rasmussen K J R, Hancock G J. Plate slenderness limits for high strength steel sections[J]. Journal of Constructional Steel Research, 1992, 23(1): 73-96.[3] Rasmussen K J R, Hancock G J. Tests of high strength steel columns[J]. Journalof Constructional Steel Research, 1995, 34(1): 27-52.[4] Beg D, Hladnik L. Slenderness limit of class 3 I cross-sections made of high strength steel[J]. Journal of Constructional Steel Research, 1996, 38(8): 201-207.[5] Iwatsubo K, Yamao T. An experimental study on the ultimate strength and behavior of members made of high strength steel with low-yield ratio[J]. Memoirs of the Faculty of Education Kumamoto University Natural Science, 2000, 45(1): 1-13.[6] 班慧勇, 施 刚, 石永久. 960 MPa高强钢焊接箱形截面残余应力试验及统一分布模型研究[J]. 土木工程学报, 2013, 46(11): 63-69.Ban Huiyong, Shi Gang, Shi Yongjiu. Experimental investigation and modeling of residual stress in box sections welded by Q960 high strength steel [J]. China Civil Engineering Journal, 2013, 46(11): 63-69.[7] 班慧勇, 施 刚, 石永久, 等. 超高强度钢材焊接截面残余应力分布研究[J]. 工程力学, 2008, 25(S2): 57-61.Ban Huiyong, Shi Gang, Shi Yongjiu,et al. Study on the residual stress distribution of ultra-high-strength-steel welded sections[J]. Engineering Mechanics, 2008, 25(S2): 57-61.[8] 班慧勇, 施 刚, 邢海军, 等. Q420等边角钢轴压杆稳定性能研究(I): 残余应力的试验研[J]. 土木工程学报, 2010, 43(7): 14-21.Ban Huiyong, Shi Gang, Xing Haijun,et al. Stability of Q420 high strength steel equal-leg angle members under axial compression (I): Experimental study on the residual stress[J]. China Civil Engineering Journal, 2010, 43(7): 14-21.[9] 班慧勇. 高强度钢材轴心受压构件整体稳定性能与设计方法研究[D]. 北京: 清华大学, 2012.[10] 班慧勇, 施 刚, 石永久, 等. Q460高强钢焊接箱形截面残余应力研究[J]. 建筑结构学报, 2013, 34(1): 14-21.Ban Huiyong, Shi Gang, Shi Yongjiu,et al. Investigation on residual stress in Q460 high strength steel welded box sections[J]. Journal of Building Structures, 2013, 34(1): 14-21.[11] 童乐为, 赵 俊, 周 锋, 等. Q460高强度焊接H型钢残余应力试验研究[J]. 工业建筑, 2012, 42(1): 51-55.Tong Lewei, Zhao Jun, Zhou Feng,et al. Experimental investigation on longitudinal residual stress of Q460 high-strength steel welded H-section members[J]. Industrial Construction, 2012, 42(1): 51-55.[12] 蔡建鹏, 孙加民, 夏林印, 等. Q345钢对接接头残余应力与变形的预测[J]. 焊接学报, 2015, 36(11): 61-64.Cai Jianpeng, Sun Jiamin, Xia Linyin,et al. Prediction on welding residual stress and deformation in Q345 steel butt-welded joints[J]. Transactions of the China Welding Institution, 2015, 36(11): 61-64.[13] 邱林波, 薛素铎, 侯兆新, 等. Q550GJ高强钢焊接H型截面残余应力试验研究[J]. 北京工业大学学报, 2015, 41(7): 1035-1042.Qiu Linbo, Xue Suduo, Hou Zhaoxin,et al. Experimental study of residual stresses in Q550GJ high-strength steel welded H-type sections[J]. Journal of Beijing University of Technology, 2015, 41(7): 1035-1042.[14] 江克斌, 肖叶桃, 郭永涛. T型焊接试件焊接残余应力分布的测定[J]. 焊接学报, 2008, 29(1): 53-56.Jiang Kebin, Xiao Yetao, Guo Yongtao.Determination of welding residual stress distribution in T-shape welded specimen[J]. Transactions of the China Welding Institution, 2008, 29(1): 53-56.[15] 中国人民共和国建设部. 钢结构设计规范[S]. 北京: 中国计划出版社, 2003.[16] 中国国家标准化管理委员会. 低合金高强度结构钢[S]. 北京: 中国标准出版社, 2009.[17] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.[18] 王国周, 赵文蔚. 焊接与热轧工字钢残余应力的测定[J]. 工业建筑, 1986, 16(7): 32-37.Wang Guozhou, Zhao Wenwei. Residual stress measurement for welded and hot-rolled I section steels[J]. Industrial Construction, 1986, 16(7): 32-37.[19] 班慧勇, 施 刚, 石永久, 等. 国产Q460高强度钢材焊接工字形截面残余应力试验及分布模型研究[J]. 工程力学, 2014, 31(6): 60-69.Ban Huiyong, Shi Gang, Shi Yongjiu,et al. Experimental investigation and modeling of residual stress in I sections welded by Q460 high strength steel[J]. Engineering Mechanics, 2014, 31(6): 60-69.
  • Related Articles

    [1]LIANG Zhimin, GAO Xu, REN Zheng, WU Ziqin, WANG Liwei, WANG Dianlong. Three-dimensional reconstruction of GMAW weld pool appearance based on variational stereo matching algorithm[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(2): 61-66. DOI: 10.12073/j.hjxb.20230224001
    [2]GAO Yanfeng, XIAO Jianhua. Curved weld-seam tracking based on information fusion of welding gun inclinations[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(12): 15-18.
    [3]HONG Bo, YAN Junguang, YANG Jiawang, LIU Xiang. A capacitive sensor for automatic weld seam tracking[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(2): 55-58.
    [4]XIAO Xinyuan, SHI Yonghua, WANG Guorong, Li Hexi. Robotic underwater weld seam tracking based on visual sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 33-36.
    [5]GAO Yanfeng, ZHANG Hua, MAO Zhiwei, PENG Junfei. Coordinate control of broken-line welding seam tracking for wheeled robot[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (5): 33-36.
    [6]WANG Kehong, CAO Hui, LIU Yong, ZHANG Deku. Binocular stereo vision with laser to reconstruct welding seam[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (8): 1-4.
    [7]LIU Xi-wen, WANG Guo-rong, SHI Yong-hua. Image processing in welding seam tracking based on single-stripe laser[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (6): 25-28,32.
    [8]CAD Hong-ming, FAN Chong-jian, WU Lin. Weld seam tracking based on micro-beam plasma arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 80-83.
    [9]GAO Xiang-dong, LUO Xi-zhu, S. J. Na. An image centroid method for seam tracking in gas tungsten arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 15-18.
    [10]Zhang Jiaying, Yu Jianrong, Ma Hongze, Jiang Lipei. Weld Seam Tracking System Based on Data Memeory of Chip Computer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1997, (1): 55-60.

Catalog

    Article views (536) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return