Advanced Search
JIANG Xudong1, HUANG Jun1, ZHOU Qi1, WANG Kehong1, SUN Hongyu2. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 16-20. DOI: 10.12073/j.hjxb.2018390060
Citation: JIANG Xudong1, HUANG Jun1, ZHOU Qi1, WANG Kehong1, SUN Hongyu2. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 16-20. DOI: 10.12073/j.hjxb.2018390060

Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys

More Information
  • Received Date: August 02, 2016
  • Based on the offset friction stir welding (FSW) characteristics of the Al-Cu dissimilar, the ANSYS software was used to simulate the transient temperature field and the welding thermal cycle curve of the fusion zone during the welding process. The maximum temperature in the transverse, longitudinal and thickness directions of the weld during the welding stabilization stage were compared and analyzed. The effect of the welding parameters on the welding temperature was investigated. The results showed that the rotation speed played a leading role in the welding temperature field. The computed results were in good agreement with the actual thermal cycling curve of feature points, which verified the accuracy of the heat source model. The results of the simulated temperature field indicated that the peak temperature appeared in the position of the partial aluminum alloy side of the weld center.
  • Mehta K P, Badheka V J. Areview on dissimilar friction stir welding of copper to aluminum: process, properties and variants[J]. Materials & Manufacturing Processes, 2015, 31(3): 233-254.[2] Xue P, Xiao B L, Ni D R,et al. Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compounds[J]. Materials Science & Engineering A, 2010, 527(21): 5723-5727.[3] 王希靖, 韩晓辉, 郭瑞杰, 等. 搅拌摩擦焊接过程温度场数值模拟[J]. 焊接学报, 2005, 26(12): 17-20.Wang Xijing, Han Xiaohui, Guo Ruijie,et al. Numerical simulation of temperature field in friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(12): 17-20.[4] 王大勇, 冯吉才, 王攀峰. 搅拌摩擦焊接热输入数值模型[J]. 焊接学报, 2005, 26(3): 25-28.Wang Dayong, Feng Jicai, Wang Panfeng. Numerical model of heat input from rotational tool during friction-stir welding[J]. Transactions of the China Welding Institution, 2005, 26(3): 25-28.[5] 杜岩峰, 白景彬, 田志杰, 等. 2219铝合金搅拌摩擦焊温度场的三维实体耦合数值模拟[J]. 焊接学报, 2014, 35(8): 57-70.Du Yanfeng, Bai Jingbin, Tian Zhijie,et al. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(8): 57-70.[6] Chang C I, Lee C J, Huang J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51(6): 509-514.[7] Zhang J, Shen Y, Li B,et al. Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy[J]. Materials & Design, 2014, 60(8): 94-101.
  • Related Articles

    [1]ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12.
    [2]DU Yanfeng, BAI Jingbin, TIAN Zhijie, LI Jinsong, ZHANG Yanhua. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 57-60,70.
    [3]ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36.
    [4]ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104.
    [5]ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76.
    [6]YU Shurong, XIONG Jinhui, FAN Ding, CHEN Jianhong. Numerical simulation on temperature field in laser welding of thin aluminum alloy plate with different thickness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 17-20.
    [7]DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100.
    [8]WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20.
    [9]MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59.
    [10]Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29.
  • Cited by

    Periodical cited type(15)

    1. 范文学,宋飞. 互补模拟法对FSW焊接工艺参数优化的可行性分析. 当代化工研究. 2024(17): 173-175 .
    2. 卢晓红,乔金辉,周宇,马冲,隋国川,孙卓. 搅拌摩擦焊温度场研究进展. 吉林大学学报(工学版). 2023(01): 1-17 .
    3. 江小辉,姚梦灿,张翼,郭维诚,侯春杰. 大厚度铝合金搅拌摩擦焊接的仿真与实验研究. 制造技术与机床. 2023(08): 133-140 .
    4. 徐良,谷世伟,杨海锋,宋坤林,李康宁,韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真. 焊接学报. 2023(11): 42-51+131 . 本站查看
    5. 宋一诺,曲杰,王廷. Cu/Al/Cu层状金属复合材料电子束焊接接头特征. 焊接. 2022(09): 50-54 .
    6. 卢翔,邵良臣,李志勇,韩善灵. DP590钢/AA6061-T6铝合金异种金属对接搅拌摩擦焊温度场的数值模拟. 热加工工艺. 2021(01): 151-155+163 .
    7. 庞嘉尧,杨宏,程伟,徐佳佳. 铜-铝合金搅拌摩擦焊研究进展. 金属加工(热加工). 2021(02): 53-59 .
    8. 张文琼,方亮,谢天. 铺粉工艺对SiC颗粒增强铝基表面复合材料性能的影响. 润滑与密封. 2021(08): 108-114 .
    9. 吴铁洲,熊厚博,邓方雄. 基于集磁器的电磁脉冲点焊设计及实验. 电焊机. 2020(02): 25-29 .
    10. 莫淑娴,朱浩,马泽铭,张二龙,王军. 铝/钢异种金属搅拌摩擦焊接头数值模拟. 兵器材料科学与工程. 2020(03): 13-18 .
    11. 周文静,许振波,杜柏松. 铝合金搅拌摩擦焊温度场及残余应力场研究. 兵器材料科学与工程. 2020(03): 74-79 .
    12. 陈鑫,潘凯旋,张彪,沈传亮. 搅拌摩擦点焊瞬态输入组合热源模型. 吉林大学学报(工学版). 2020(04): 1316-1323 .
    13. 殷凯,曹丽杰,王楠楠. 异种金属搅拌摩擦对接焊研究进展. 轻工机械. 2019(01): 11-15 .
    14. 岳太文,门正兴,马亚鑫,唐越. SA508-3钢内部闭合性裂纹缺陷高温焊合过程分析. 精密成形工程. 2019(02): 45-49 .
    15. 苗臣怀,曹丽杰,殷凯,王楠楠. 铝合金-钢搅拌摩擦焊温度场数值研究. 轻工机械. 2019(06): 82-87 .

    Other cited types(21)

Catalog

    Article views (670) PDF downloads (4) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return