Citation: | JIANG Xudong1, HUANG Jun1, ZHOU Qi1, WANG Kehong1, SUN Hongyu2. Numerical simulation of the temperature field for butt friction stir welding of dissimilar 6061-T6 and T2 alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(3): 16-20. DOI: 10.12073/j.hjxb.2018390060 |
Mehta K P, Badheka V J. Areview on dissimilar friction stir welding of copper to aluminum: process, properties and variants[J]. Materials & Manufacturing Processes, 2015, 31(3): 233-254.[2] Xue P, Xiao B L, Ni D R,et al. Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compounds[J]. Materials Science & Engineering A, 2010, 527(21): 5723-5727.[3] 王希靖, 韩晓辉, 郭瑞杰, 等. 搅拌摩擦焊接过程温度场数值模拟[J]. 焊接学报, 2005, 26(12): 17-20.Wang Xijing, Han Xiaohui, Guo Ruijie,et al. Numerical simulation of temperature field in friction stir welding[J]. Transactions of the China Welding Institution, 2005, 26(12): 17-20.[4] 王大勇, 冯吉才, 王攀峰. 搅拌摩擦焊接热输入数值模型[J]. 焊接学报, 2005, 26(3): 25-28.Wang Dayong, Feng Jicai, Wang Panfeng. Numerical model of heat input from rotational tool during friction-stir welding[J]. Transactions of the China Welding Institution, 2005, 26(3): 25-28.[5] 杜岩峰, 白景彬, 田志杰, 等. 2219铝合金搅拌摩擦焊温度场的三维实体耦合数值模拟[J]. 焊接学报, 2014, 35(8): 57-70.Du Yanfeng, Bai Jingbin, Tian Zhijie,et al. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(8): 57-70.[6] Chang C I, Lee C J, Huang J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51(6): 509-514.[7] Zhang J, Shen Y, Li B,et al. Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy[J]. Materials & Design, 2014, 60(8): 94-101.
|
[1] | ZONG Xuemei, WU Bin, ZHANG Liping, LI Wen. Numerical simulation of temperature field in weaving welding based on ladder model[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 9-12. |
[2] | DU Yanfeng, BAI Jingbin, TIAN Zhijie, LI Jinsong, ZHANG Yanhua. Investigation on three-dimensional real coupling numerical simulation of temperature field of friction stir welding of 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 57-60,70. |
[3] | ZHANG Lei, QIN Guoliang, ZHANG Chunbo, ZHAO Yushan, ZHOU Jun. Numerical simulation of radial friction welding temperature field of steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 32-36. |
[4] | ZHANG Xiaoqi, XU Guocheng, WANG Chunsheng, WEN Jing. Numerical simulation of the temperature field during resistance spot welding with rectangular electrode[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (4): 101-104. |
[5] | ZHANG Huajun, ZHANG Guangjun, CAI Chunbo, WANG Junheng, WU Lin. Numerical simulation on temperature field of dynamic welding processing with weaving[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 69-72,76. |
[6] | YU Shurong, XIONG Jinhui, FAN Ding, CHEN Jianhong. Numerical simulation on temperature field in laser welding of thin aluminum alloy plate with different thickness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 17-20. |
[7] | DU Han-bin, HU Lun-ji, WANG Dong-cuan, SUN Cheng-zhi. Simulation of the temperature field and flow field in full penetration laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 65-68,100. |
[8] | WANG Xi-jing, HAN Xiao-hui, Guo Rui-jie, LI Jing. Numerical simulation of temperature field in friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (12): 17-20. |
[9] | MENG Qing-guo, FANG Hong-yuan, XU Wen-li, JI Shu-de. Numerical simulation of muli-pass welding temperature field taking account of metal filling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (5): 53-55,59. |
[10] | Zou Zengda, Wang Xinhong, Qu Shiyao. Numerical Simulation of Temperature Field for Weld-repaired Zone of White Cast Iron[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 24-29. |
1. |
范文学,宋飞. 互补模拟法对FSW焊接工艺参数优化的可行性分析. 当代化工研究. 2024(17): 173-175 .
![]() | |
2. |
卢晓红,乔金辉,周宇,马冲,隋国川,孙卓. 搅拌摩擦焊温度场研究进展. 吉林大学学报(工学版). 2023(01): 1-17 .
![]() | |
3. |
江小辉,姚梦灿,张翼,郭维诚,侯春杰. 大厚度铝合金搅拌摩擦焊接的仿真与实验研究. 制造技术与机床. 2023(08): 133-140 .
![]() | |
4. |
徐良,谷世伟,杨海锋,宋坤林,李康宁,韩来慧. 碳纤维增强复合材料与6061铝合金激光连接仿真. 焊接学报. 2023(11): 42-51+131 .
![]() | |
5. |
宋一诺,曲杰,王廷. Cu/Al/Cu层状金属复合材料电子束焊接接头特征. 焊接. 2022(09): 50-54 .
![]() | |
6. |
卢翔,邵良臣,李志勇,韩善灵. DP590钢/AA6061-T6铝合金异种金属对接搅拌摩擦焊温度场的数值模拟. 热加工工艺. 2021(01): 151-155+163 .
![]() | |
7. |
庞嘉尧,杨宏,程伟,徐佳佳. 铜-铝合金搅拌摩擦焊研究进展. 金属加工(热加工). 2021(02): 53-59 .
![]() | |
8. |
张文琼,方亮,谢天. 铺粉工艺对SiC颗粒增强铝基表面复合材料性能的影响. 润滑与密封. 2021(08): 108-114 .
![]() | |
9. |
吴铁洲,熊厚博,邓方雄. 基于集磁器的电磁脉冲点焊设计及实验. 电焊机. 2020(02): 25-29 .
![]() | |
10. |
莫淑娴,朱浩,马泽铭,张二龙,王军. 铝/钢异种金属搅拌摩擦焊接头数值模拟. 兵器材料科学与工程. 2020(03): 13-18 .
![]() | |
11. |
周文静,许振波,杜柏松. 铝合金搅拌摩擦焊温度场及残余应力场研究. 兵器材料科学与工程. 2020(03): 74-79 .
![]() | |
12. |
陈鑫,潘凯旋,张彪,沈传亮. 搅拌摩擦点焊瞬态输入组合热源模型. 吉林大学学报(工学版). 2020(04): 1316-1323 .
![]() | |
13. |
殷凯,曹丽杰,王楠楠. 异种金属搅拌摩擦对接焊研究进展. 轻工机械. 2019(01): 11-15 .
![]() | |
14. |
岳太文,门正兴,马亚鑫,唐越. SA508-3钢内部闭合性裂纹缺陷高温焊合过程分析. 精密成形工程. 2019(02): 45-49 .
![]() | |
15. |
苗臣怀,曹丽杰,殷凯,王楠楠. 铝合金-钢搅拌摩擦焊温度场数值研究. 轻工机械. 2019(06): 82-87 .
![]() |