Citation: | DENG Muyang1,2, DONG Fengbo2, CHEN Ji1, LIU Cunli1, CHEN Ke1,3. Effects of titanium powder addition on thermal stability of grain structure in friction stir welds of aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 15-18. DOI: 10.12073/j.hjxb.20150830002 |
Mishra R S, Ma Z Y Friction stir welding and processing[J]. Materials Science and Engineering, 2005, 50(1-2): 1-78.[2] Charit I, Mishra R S. High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing[J]. Materials and Engineering, 2003, 359(1-2): 290-296.[3] Chen Y C, Feng J C, Liu H J, Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment[J]. Materials Characterization, 2007, 58(2): 174-178.[4] Krishnan K N. The effect of post weld heat treatment on the properties of 6061 friction stir welded joints[J]. Journal of Materials Science, 2002, 37(3): 473-480.[5] Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructure(Ⅱ). The effect of second-phase particles[J]. Acts Materials, 1997, 45(10): 5031-5039.[6] Chen Ke, Gan Wei,Okamoto K. The mechanism of grain coarsening in friction-stir-welded AA5083 after heat treatment[J]. Metallurgical and Materials Transactions A, 2011, 42(2): 507-520.[7] Attallah M, Salem H. Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment[J]. Materials Science and Engineering A, 2005, 391(1-2): 51-59.[8] Charit I, Mishra R S, Abnormal grain growth in friction stir processed alloys[J]. Scripta Materialia, 2008, 58(5): 367-371.[9] 任淑荣, 马宗义, 陈礼清, 等. 焊后热处理工艺和背部二次焊接对搅拌摩擦焊接7075-T651铝合金性能的影响[J]. 金属学报, 2007, 43(3): 225-230. Ren Shurong, Ma Zongyi, Chen Liqing,etal. Effects of post weld heat-treatment and second-welding on tensile properties of friction stir welding 7075-T651 aluminum alloy[J]. Acta Metallurgica Sinic, 2007, 43(3): 225-230.[10] Hsu C J, Chang C Y, Kao P W. Al-Al3Ti nano-composites produced in situ by friction stir processing[J]. Acta Materialia, 2006, 54(19): 5241-5249.
|
[1] | ZHANG Zhifen, CHEN Shanben, ZHANG Yuming, WEN Guangrui. Research progress and prospect of welding intelligent monitoring technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 10-20, 70. DOI: 10.12073/j.hjxb.20240707001 |
[2] | CHENG Yongchao, XIAO Jun, CHEN Shujun, ZHANG Yuming. Intelligent penetration welding of thin-plate gtaw process based on arc voltage feedback[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(12): 1-4. DOI: 10.12073/j.hjxb.2018390287 |
[3] | HE Peng, ZHANG Ling. Development of intelligent brazing technology[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(4): 124-128. DOI: 10.12073/j.hjxb.20170429 |
[4] | TAO Liang, SUN Tongjing, DUAN Bin, ZHANG Guangxian. Intelligent decision of welding quality classification based on rough set[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (7): 29-32. |
[5] | LI Wen-hang, CHEN Shan-ben, LIN Tao, DU Quan-ying. An new discretization algorithm for intelligent modeling in welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2006, (12): 45-48. |
[6] | CHEN Shan-ben, LIN Tao, CHEN Wen-jie, QIU Tao. Concepts and technologies on intelligentized welding manufacturing engineering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (6): 124-128. |
[7] | PIAO Yong-Jie, LIN Tao, QUI Tao, CHEN San-ben. Application of Multi-Agent Systems in Welding Flexible Manufacturing System[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 87-90,96. |
[8] | YU Jian-rong, JIANG Li-pei, SUN Zhen-guo, WANG Jun-bo. One-knob Intelligent Control System of CO2 Welding Machine[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2001, (3): 51-54. |
[9] | Huang Shisheng, Cheng Taobo, You Yanjun, Zhong Hanru. Intelligent Control Technique Used for CO2 Welding Robot System Based on Bi-processor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (2): 60-63. |
[10] | Peng Jinning, Chen Bingsen, Zhu Ping. Intelligent Design of Welding Procedure Parameters Based on Neural Networks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1998, (1): 21-26. |
1. |
樊炳倩,沈闲. 激光选区熔化参数对热物理过程影响数学模型分析. 激光杂志. 2025(01): 222-227 .
![]() | |
2. |
袁健,何斌,张俊飞,陈国炎,张锁荣. 纳秒激光参数对316L不锈钢沟槽结构加工的影响. 金属加工(热加工). 2024(05): 61-66 .
![]() |