Citation: | YUAN Mingqiang, ZHANG Chunbo, LIANG Wu, WU Yanquan, XIE Xingfei, ZHOU Jun, QU Jinglong. Analysis of microstructures and properties of GH4151 super alloy inertia fricrion welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 63-71. DOI: 10.12073/j.hjxb.20241010003 |
In this article, the inertial friction welding technology was applied to weld GH4151 alloy, and the microstructure, fracture morphology, and mechanical properties of the joints were observed under OM, SEM, DSC, microhardness tester, and electronic tensile testing machine. The results showed that during the welding process, the inner and outer flying edges had a rough shape and multiple microcracks. The burn-off length was up to 3 mm. Dynamic recrystallization occurred at the interface of the weld. Primary γ´ phase, secondary γ´ phase and carbide (MC) were precipitated in the grain and at the grain boundary. Under the action of residual stress and binding force, several microcracks occurred in the MC and expanded. By changing the forging pressure, the size, morphology, and quantity of MC were optimized, which have solved the problem of microcracking in the MC phase. Mechanical performance testing showed that the microhardness curve after heat treatment had demonstrated an M-shape, with the highest hardness in the TMAZ, which were positively correlated with the quantity and morphology of γ´and MC phase, reaching 546 HV1.0 as the highest . The tensile performance results showed that room and high temperature (750 ℃) tensile strength up to 97% of base material. From the perspective of crack propagation, room temperature fracture morphology shows along-crystal fracture. The high-temperature fracture morphology shows brittle fracture.
[1] |
向雪梅, 江河, 董建新, 等. 难变形高温合金GH4975的铸态组织及均匀化[J]. 金属学报, 2020, 56(7): 988 − 996.
Xiang Xuemei, Jiang He, Dong Jianxin, et al. As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975[J]. Acta Metallurgica Sinica, 2020, 56(7): 988 − 996.
|
[2] |
张露, 张春波, 廖仲祥, 等. IN718/FGH96惯性摩擦焊接头焊合区微观组织状态与织构分布特征[J]. 电焊机, 2022, 52(4): 9 − 13.
Zhang Lu, Zhang Chunbo, Liao Zhongxiang, et al. Microstructure and texture distribution characteristics in weld zone of IN718/FGH96 Inertial friction welded joint[J]. Electric Welding Machine, 2022, 52(4): 9 − 13.
|
[3] |
Tian H L, Xiong S J, Jin G, et al. Research progress of anti-titanium flame retardant abrasion resistance coating for aero-engine titanium alloy compressor assembly[J]. Rare Metal Materials and Engineering[J], 2021, 50(7): 2620 − 2629.
|
[4] |
宁永权. FGH96高温合金的再结晶组织特征[J]. 稀有金属材料与工程, 2016, 45(5): 1225 − 1229.
Ning Yongquan. Recrystallization characterization of FGH96 superalloy[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1225 − 1229.
|
[5] |
张春波, 周军, 赵玉珊, 等. 不同热处理状态AMS6308钢惯性摩擦焊接头组织及力学性能[J]. 焊接学报, 2015, 36(7): 21 − 24.
Zhang Chunbo, Zhou Jun, Zhao Yushan, et al. Microstructure and mechanical properties of inertia friction welding joint of AMS6308 steel at different heat treatment state[J]. Transactions of the China Welding Institution, 2015, 36(7): 21 − 24.
|
[6] |
Zimmerman J, Wlosinski W, Lindemann Z R. Thermo-mechanical and diffusion modelling in the process of ceramic–metal friction welding[J]. Journal of Materials Processing Technology, 2009, 209(4): 1644 − 1653. doi: 10.1016/j.jmatprotec.2008.04.012
|
[7] |
吕少敏. GH4151合金高温变形行为及组织与性能控制研究[D]. 北京: 北京科技大学, 2021.
Lü Shaomin. Research on hot deformation behavior and microstructure-properties control of GH4151 alloy[D] . Beijing: University of Science and Technology Beijing, 2021.
|
[8] |
王法, 江河, 董建新. 基于热加工图的均匀化态GH4151合金热变形行为研究[J]. 稀有金属材料与工程, 2023, 52(1): 245 − 252.
Wang Fa, Jiang He, Dong Jianxin. Research on hot deformation behavior of homogenized GH4151 alloy based on hot processing map[J]. Rare Metal Materials and Engineering, 2023, 52(1): 245 − 252.
|
[9] |
冯南平, 向巧, 沈荣骏, 等. 航空发动机关键核心技术攻关的组织策略研究[J]. 中国工程科学, 2022, 24(4): 222 − 229. doi: 10.15302/J-SSCAE-2022.04.019
Feng Nanping, Xiang Qiao, Shen Rongjun, et al. Organization strategies of innovation forces for the breakthrough of key core technologies in aero-engine industry[J]. Strategic Study of CAE, 2022, 24(4): 222 − 229. doi: 10.15302/J-SSCAE-2022.04.019
|
[10] |
张露, 韩秀峰, 王伦. 商用航空发动机盘轴类转动件焊接工艺分析[J]. 航空制造技术, 2015, 58(11): 96 − 98.
Zhang Lu, Han Xiufeng, Wang Lun, et al. Welding process analysis of disk and shaft rotor component of commercial aeroengine[J]. Aeronautical Manufacturing Technology, 2015, 58(11): 96 − 98.
|
[11] |
张田仓, 李晶, 季亚娟, 等. TC4钛合金线性摩擦焊接头组织和力学性能[J]. 焊接学报, 2010, 31(2): 53 − 56.
Zhang Tiancang, Li Jing, Ji Yajuan et al. Structure and mechanical properties of TC4 linear friction welding joint[J]. Transactions of the China Welding Institution[J], 2010, 31(2): 53 − 56.
|
[12] |
Qin F , Zhang C B , Zhou J , et al. Microstructure and mechanical properties of aluminum alloy/stainless steel dissimilar ring joint welded by inertia friction welding[J]. Frontiers in Materials, 2022, 8: 561.
|
[13] |
Wang F F, Li W Y, Dai Y, et al. Finite element simulation of inertia friction welding of superalloy bars[J]. China Welding, 2012, 21(1): 13 − 17.
|
[14] |
Ding Y H, Wen G Q, Li H Y, et al. Microstructure and mechanical properties of inertia friction welded joints between alloy steel 42CrMo and cast Ni-based superalloy K418[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2019, 803: 176 − 184.
|
[15] |
Li X X, Jia C L, Zhang Y, et al. Cracking mechanism in as-cast GH4151 superalloy ingot with high γ′ phase content[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(10): 2697 − 2708. doi: 10.1016/S1003-6326(20)65413-9
|
[16] |
Li X X, Jia C L, Zhang Y, et al. Incipient melting phase and its dissolution kinetics for a new superalloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2107 − 2118. doi: 10.1016/S1003-6326(20)65364-X
|
[17] |
张传臣, 赵春玲, 张田仓, 等. K447A + GH4169惯性摩擦焊工艺试验研究[J]. 材料导报, 2018, 32(16): 2783 − 2786. doi: 10.11896/j.issn.1005-023X.2018.16.015
Zhang Chuanchen, Zhao Chunling, Zhang Tiancang, et al. The study of K447A + GH4169 inertia friction welding technology[J]. Materials Review, 2018, 32(16): 2783 − 2786. doi: 10.11896/j.issn.1005-023X.2018.16.015
|
[18] |
杨军, 楼松年, 严隽民, 等. GH4169高温合金惯性摩擦焊接头晶粒分布特征[J]. 焊接学报, 2001, 22(3): 33 − 35. doi: 10.3321/j.issn:0253-360X.2001.03.009
Yang Jun, Lou Songnian, Yan Junmin, et al. Grain distribution properties of superalloy GH4169 inertia friction welded joint[J]. Transactions of the China Welding Institution, 2001, 22(3): 33 − 35. doi: 10.3321/j.issn:0253-360X.2001.03.009
|
[19] |
孙文, 秦学智, 郭建亭, 等. 铸造镍基高温合金中初生MC碳化物的退化过程和机理[J]. 金属学报, 2016, 52(4): 455 − 462. doi: 10.11900/0412.1961.2015.00399
Sun Wen, Qin Xuezhi, Guo Jianting, et al. Degeneration process and mechanism of primary MC carbides in a cast Ni-based superalloy[J]. Acta Metallurgica Sinica, 2016, 52(4): 455 − 462. doi: 10.11900/0412.1961.2015.00399
|
[20] |
Yuan G T, Liu F, Zhang A W, et al. Element segregation and solidification behavior of a Nb, Ti, Al Co-strengthened superalloy ЭК151[J]. Acta Metallurgica Sinica, 2019, 32(10): 120-130.
|
[1] | ZHANG Chuanchen, ZHANG Tiancang, ZHAO Chunling. Microstructure and high temperature mechanical properties of inertia friction welding joint of K447A + GH4169[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(10): 137-141. DOI: 10.12073/j.hjxb.2019400275 |
[2] | ZHANG Chunbo, ZHOU Jun, ZHANG Lu, ZHANG Guodong, ZHANG Yongqiang. Microstructure and properties of GH4169 nickel-based superalloy and FGH96 nickel-based powder metallurgy superalloy inertial friction welding joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(6): 40-45. DOI: 10.12073/j.hjxb.2019400152 |
[3] | WANG Bin1, HUANG Jihua1, ZHANG Tiancang2, JI Yajuan2, HE Shengchun2. Effects of rotation rate on microstructures and mechanical properties of FGH96/GH4169 superalloy inertia friction welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(4): 41-44,72. DOI: 10.12073/j.hjxb.2018390092 |
[4] | ZHANG Chunbo, ZHOU Jun, ZHAO Yushan, AN Hongliang. Microstructure and mechanical properties of inertia friction welding joint of AMS6308 steel at different heat treatment state[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(7): 21-24. |
[5] | DU Borui, TIAN Xiangjun, WANG Huaming. Microstructure and mechanical properties of MIG welded joint of laser melting deposited TA15 titanium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (11): 65-68. |
[6] | LEI Yucheng, ZHAO Kai, HUANG Wei, LIANG Shenyong. Effect of La2O3 on microstructure and mechanical properties of MGH956 alloy during TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (10): 1-4. |
[7] | LI Xiawei, ZHANG Datong, QIU Cheng, ZHANG Wen. Effect of processing parameters on microstructure and mechanical properties of pure copper joints made by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 93-96. |
[8] | XU Hongji, YIN Lixiang, WEI Zhiyu, XIE Ming, ZHANG Tiancang. Microstructures and properties of Ti17 alloy inertia friction welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (12): 89-92. |
[9] | LI Jun, YANG Jianguo, WENG Lulu, FANG Hongyuan. Effect of welding with trailing rotating extrusion on microstructure and mechanical properties of aluminum alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 101-104. |
[10] | MA Tiejun, YANG Siqian, ZHANG Yong, LI Wenya. Mechanical properties and microstructure features of linear friction welded TC4 titanium alloy joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (10): 17-20. |