Advanced Search
YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002
Citation: YIN Yan, KANG Ping, LU Chao, ZHANG Yuan, ZHANG Ruihua. Microstructure and microhardness analysis of laser welded dissimilar steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 71-77. DOI: 10.12073/j.hjxb.20191227002

Microstructure and microhardness analysis of laser welded dissimilar steel

More Information
  • Received Date: December 26, 2019
  • Available Online: October 15, 2020
  • After welding dissimilar steel by laser swing welding, the equilibrium phase diagrams of base 3Cr13 and VG10 were calculated by JMATPro software, and the phase composition and microstructure of weld, fusion zone and heat affected zone were analyzed by XRD, SEM, EPMA and other techniques. in addition, the microhardness distribution of welded joints was determined. The results show that the weld is mainly composed of phases and carbides M7C3, and from the fusion line to the weld center, the structure changes from plane crystal to cellular crystal, cellular dendrite, columnar crystal, dendritic crystal and equiaxed crystal. The microstructure of the weld exists micro-segregation, in which C and Cr elements are enriched at the grain boundary, Fe elements are enriched within the grains, and bar-like M7C3 precipitates at the grain boundaries. There is a C migration phenomenon at the base material of the fusion line near. Among them, acicular martensitic structure is generated on the 3Cr13 side, and the unmixed zone exists in the fusion zone on the VG10 side. At this position, the massive, island tissue is embedded in the base Material, and there are lamellar carbides on the structure. The hardness of the base metal on both sides of the fusion line is the largest, and the hardness of the weld zone changes little. The hardness of the heat affected zone decreases with the increase of the distance away from the weld center.
  • Mittal R, Sidhu B S. Microstructures and mechanical properties of dissimilar T91/347H steel weldments[J]. Journal of Materials Processing Technology, 2015, 220: 76 − 86. doi: 10.1016/j.jmatprotec.2015.01.008
    王瑞, 石玗, 李广, 等. 镍对铜/不锈钢GTAW接头导电性及腐蚀性能的影响[J]. 焊接学报, 2019, 40(12): 53 − 58.

    Wang Rui, Shi Yu, Li Guang, et al. Effect of nickel on conductivity and corrosion of copper/stainless steel GTAW joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 53 − 58.
    Liu Liming, Zhou Yanbin. Mechanism analysis of free formation of backing weld by the pulsed MAG-TIG double arc tandem welding[J]. China Welding, 2019, 28(4): 8 − 15.
    Liu G L, Yang S W, Han W T, et al. Microstructural evolution of dissimilar welded joints between reduced-activation ferritic-martensitic steel and 316L stainless steel during the post weld heat treatment[J]. Materials Science and Engineering: A, 2018, 722: 182 − 196. doi: 10.1016/j.msea.2018.03.035
    刘桐, 杨立军, 邱文聪, 等. 304不锈钢激光深熔焊元素蒸发及焊缝合金含量变化[J]. 焊接学报, 2018, 39(2): 8 − 12.

    Liu Tong, Yang Lijun, Qiu Wencong, et al. Vaporization and composition change of 304 stainless steel during keyhole mode laser welding[J]. Transactions of the China Welding Institution, 2018, 39(2): 8 − 12.
    母晓红, 牛旭, 惠文. 激光焊的原理及其应用研究[J]. 科技创新导报, 2009(8): 5 − 6. doi: 10.3969/j.issn.1674-098X.2009.08.004

    Mu Xiaohong, Niu Xu, Hui Wen. Principle and application of laser welding[J]. Science and Technology Innovation Herald, 2009(8): 5 − 6. doi: 10.3969/j.issn.1674-098X.2009.08.004
    He Yannan, Song Qiang, Sun Kang, et al. Microstructure and properties of in-situ chromium carbide composite coating by laser cladding[J]. China Welding, 2018, 27(4): 10 − 17.
    宗攀, 张覃轶, 孙伟, 等. 热处理工艺对大马士革VG10钢组织和性能的影响[J]. 金属热处理, 2018(11): 117 − 122.

    Zong Pan, Zhang Qinyi, Sun Wei, et al. Effect of heat treatment process on microstructure and mechanical properties of Damascus VG10 steel[J]. Heat treatment of metals, 2018(11): 117 − 122.
    尹燕, 栗子林, 许广伟, 等. 3Cr13厨刀碟片激光同轴送粉熔覆层的显微硬度与组织[J]. 焊接学报, 2016, 37(10): 86 − 87.

    Yin Yan, Li Zilin, Xu Guangwei, et al. Microhardness and microstructure of laser cladding layer on 3Cr13 kitchen knife by disc laser coaxial powder[J]. Transactions of the China Welding Institution, 2016, 37(10): 86 − 87.
    徐仰涛, 沙岐振. 基于JMatPro软件对不同B含量下Co-8.8Al-9.8W合金析出相的热力学模拟计算[J]. 稀有金属材料与工程, 2016, 45(9): 2332 − 2336.

    Xu Yangtao, Sha Qizhen. Thermodynamic simulation calculation of Co-8.8A1-9.8W alloy with different B contents based on JMatPro software[J]. Rare Metal Materials and Engineering, 2016, 45(9): 2332 − 2336.
    王鲁, 杨钢, 刘正东, 等. 基于Thermo-Calc和JMatPro模拟计算的新型镍基合金设计[J]. 材料热处理学报, 2017, 38(4): 193 − 199.

    Wang Lu, Yang Gang, Liu Zhengdong, et al. Design of a new Ni-base alloy based on simulated calculation on Thermo-Calc & JMatPro[J]. Transaction of Materials and Heat Treatment, 2017, 38(4): 193 − 199.
    黄继华. 焊接冶金原理[M]. 北京: 机械工业出版社, 2015.

    Huang Jihua. Principle of welding metalluryy[M]. Beijing: China Machine Press, 2015.
    魏翔云, 张玉生. 碳含量对Fe-30Ni-20Cr-6Mo铸造合金元素偏析和耐蚀性的影响[J]. 腐蚀科学与防护技术, 1996(3): 210 − 213.

    Wei Xiangyun, Zhang Yusheng. Effect of carbon content on element segregation and corrosion-resistance of cast alloy fe-30Ni-20Cr-6Mo[J]. Corrosion Science and Protection Technology, 1996(3): 210 − 213.
    潘春旭. 异种钢及异种金属焊接显微结构特征及其转变机理[M]. 北京: 人民交通出版社, 2000.

    Pan Chunxu. Microstructure characteristics and transformation mechonism of dissimilar sreels and metals[M]. Beijing: China Communications Press, 2000.
    Wieczerzak K, Bala P, Stepien M, et al. Formation of eutectic carbides in Fe-Cr-Mo-C alloy during non-equilibrium crystallization[J]. Materials & Design, 2016, 94(3): 61 − 68.
    Chang C M, Lin C M, Hsieh C C, et al. Effect of carbon content on microstructural characteristics of the hypereutectic Fe-Cr-C claddings[J]. Materials Chemistry and Physics, 2009, 117(1): 257 − 261. doi: 10.1016/j.matchemphys.2009.05.052

Catalog

    Article views (466) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return