Advanced Search
WANG Guoqing, XIONG Linyu, TIAN Zhijie, DONG Kangying, Liu Qi. Microstructure and property of TIG welded 2219 aluminum alloy by different heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 121-124.
Citation: WANG Guoqing, XIONG Linyu, TIAN Zhijie, DONG Kangying, Liu Qi. Microstructure and property of TIG welded 2219 aluminum alloy by different heat treatment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(1): 121-124.

Microstructure and property of TIG welded 2219 aluminum alloy by different heat treatment

More Information
  • Received Date: July 08, 2016
  • Two heat-treated 2219 aluminum alloys were welded by two-pass TIG welding. DC TIG was used for first pass, AC TIG for cover pass. The micro-structure, phase composition and mechanical properties under room and cryogenictemperaturesof welded joint were tested. The results show that the micro-structures of base metals are α(Al) with Al2Cu strengthening phase, while 2219 C10S has a lath-like micro-structure along the rolling direction, 2219 CYS has a coarse irregular polygon micro-structure. α+θ eutectic phases distribute on grain boundary and matrix in weld and partial meltedzone.Solid solution of Cu in the matrix is in-homogeneous. Coarse grain, grain orientation and grain boundary segregation could be the causes of fracture initiation from partial melted zone of 2219CYS.
  • Muraca R F, Whittick J S. Materials data handbook-Aluminum alloy 2219(2nd Edition)[R]. Hunteville:Marshall Space Flight Center,1972.
    吴龙飞. 2219铝合金TIG焊接性研究[D]. 上海:上海交通大学, 2007.
    Richard A. Davis. Evaluation of welded 2219-T87 aluminum alloy[R]. Hunteville:Marshall Space Flight Center, 1962.
    Clotfelter W N, Hoop J M, Duren P C. Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments[R]. Hunteville:Marshall Space Flight Center, 1975.
    Manufacturing Engineering Laboratory. Aluminum weld development complex[R]. Hunteville:Marshall Space Flight Center, 1966.
    张海. 2219铝合金FSW-VPPA交叉焊缝组织性能研究[D]. 南京:南京航空航天大学, 2012.
    袁鹤然. 2219铝合金搅拌摩擦与变极性等离子交叉焊缝的研究[D]. 哈尔滨:哈尔滨工业大学, 2009.
    郭彦明. 2219铝合金FSW缺陷与GTAW再热对接头性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2010.
    田志杰, 苏志强, 高彦军, 等. 2219铝合金FSW与VPPA交叉焊接研究[J]. 焊接技术, 2013, 42(11):14-17. Tian Zhijie, Su Zhiqiang, Gao Yanjun, et al. Research of FSW and VPPA intercross welding of 2219 aluminum alloy[J]. Welding Technology, 2013, 42(11):14-17.
    张聃, 陈文华, 孙耀华, 等. 焊接方法对2219铝合金焊接接头力学性能的影响[J]. 航空材料学报, 2013, 33(1):45-49. Zhang Dan, Chen Wenhua, Sun Yaohua, et al. Analysis of mechanical properties about the welding joints of 2219 aluminum alloy[J]. Journal of Aeronautical Materials, 2013, 33(1):45-49.
    Stephen D D. An investigation of themicrostructural changes in the heat affected zone of age hardenable aluminum alloys using transmission electron microscopy[D]. Pittsburgh:Carnegie Mellon University, 1983.
    Huang C, Kou S. Partially melted zone in aluminium welds:solute segregation and mechanical behaviour[J]. Welding Journal. 2001, 80(9):9-17.
  • Related Articles

    [1]XIU Zijin, ZHANG Penghao, ZHANG Wenwu, WANG Xiuqi, JI Hongjun. Microstructural characteristics and properties of Cu@Ag NPs interconnect joints fabricated via ultrasound-assisted sintering[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(12): 28-34. DOI: 10.12073/j.hjxb.20230613013
    [2]WANG Xujian, TAN Caiwang, HE Ping, FAN Chenglei, GUO Dizhou, DONG Haiyi. Microstructure and mechanical properties of CuCrZr /Inconel 625 laser welding joints on HEPS storage ring vacuum box[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 35-40. DOI: 10.12073/j.hjxb.20220204002
    [3]WANG Xujian, TAN Caiwang, GUO Dizhou, FAN Chenglei, DONG Haiyi, SONG Hong. Microstructure and mechanical properties of CuCrZr/316LN laser welding joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(2): 123-128. DOI: 10.12073/j.hjxb.20220304001
    [4]HOU Jinbao, ZHAO Lei. Analysis on the interface microsctruture and property of SiCf/SiCand MX246A brazing joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(4): 74-78. DOI: 10.12073/j.hjxb.20201222001
    [5]SONG Zhihua, WU Aiping, YAO Wei, ZOU Guisheng, REN Jialie, WANG Yongyang. Influence of laser offset on microstructure and mechanical properties of Ti/Al dissimilar joint by laser welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 105-108.
    [6]RAN Guowei, SONG Yonglun, YAN Sibo, LIN Jiangbo. Welding process and joint properties of hybrid welding on 2219 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (9): 25-29.
    [7]WANG Min, WU Yixiong, PAN Hua, LEI Ming. Effect of base metal chemical composition on properties of resistance spot welding joint of DP590 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 33-35.
    [8]FENG Yuehai, JIN Qiu, WANG Kehong, GU Minle. Microstructure and properties of middle thickness sheet welded joint for high strength alloy steel with Tandem GMAW system[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (6): 51-54.
    [9]FENG Yuehai, WANG Kehong, WANG Jianping, GU Minle. Welding technology and microstructure and properties of welded joint of high strength and hardness alloy steel for tandem GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (11): 97-100.
    [10]WU Shikai, YANG Wuxiong, DONG Peng, XIAO Rongshi. Microstructure and properties of welded joint for narrow gap laser welding of 42CrMo steel bevel gear shaft[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 25-28.
  • Cited by

    Periodical cited type(23)

    1. 崔健伟,张鹏,王立新,聂新宇,李建国,邹运,董悦雷. 层间温度对GMA电弧增材制造不锈钢显微组织和力学性能的影响. 焊管. 2025(01): 35-40+49 .
    2. 陈大林,宋学平,赵青山,高晓菲. 激光功率对CMT电弧增材制造316L不锈钢组织与性能的影响. 电焊机. 2025(02): 39-45 .
    3. 王梦真,万占东,林健. 电弧增材制造工艺及数值仿真研究进展. 大型铸锻件. 2024(01): 7-12 .
    4. 李敬勇,李超然,徐育烺,钱鹏. 层间温度对CMT电弧增材制造2Cr13不锈钢薄壁件成形及组织和性能影响. 焊接. 2024(02): 43-50 .
    5. 黄佳蕾,陈菊芳,姜宇杰,李小平,雷卫宁. TIG电弧增材制造308L不锈钢的显微组织与力学性能分析. 热加工工艺. 2023(01): 38-42+47 .
    6. 王德伟,鲍正浩. 激光选区增材制造420不锈钢件的组织及力学性能. 焊接技术. 2023(02): 1-4+113 .
    7. 吴随松,郭纯,刘武猛,营梦,李云. ER316L不锈钢电弧增材制造的组织与性能分析. 新余学院学报. 2023(02): 10-18 .
    8. 赵阳,范若兰,刘玉锋,王震. 丝材电弧增材制造技术制备316L不锈钢的力学性能. 建筑结构学报. 2023(08): 207-216 .
    9. 樊世冲,殷凤仕,任智强,韩国峰,付华,刘亚凡,王鸿琪,鲁克锋,孙金钊,王文宇. 基于电弧的多能场复合增材制造技术研究现状. 表面技术. 2023(08): 49-70 .
    10. 王强,王磊磊,高转妮,杨兴运,占小红. 快速电弧模式增材制造316L不锈钢组织与性能. 焊接学报. 2023(10): 86-93+137-138 . 本站查看
    11. 李学军,朱平,尚建路,王龙,陈亮. 电弧增材制造的核级316L不锈钢组织及腐蚀性能研究. 热加工工艺. 2023(19): 24-27 .
    12. 齐善根,谭振,李建一,王及匀,王立伟,BALAJI Narayanaswamy. Al-Mg-Si合金电弧增材制造工艺参数与性能研究. 金属加工(热加工). 2023(12): 25-31 .
    13. 李宁,刘少龙,丁雪松,徐雨红,范文磊,苏焕朝,王博玉. 不同工艺参数下0Cr18Ni9钢薄壁管脉冲钨极氩弧焊接头的组织与拉伸性能. 机械工程材料. 2022(02): 58-62 .
    14. 何鹏,柏兴旺,周祥曼,张海鸥. MIG电弧增材制造6061铝合金的组织和性能. 焊接学报. 2022(02): 50-54+60+116-117 . 本站查看
    15. 徐海涛,燕春光,张舒展,史显波,严伟,姜海昌. 奥氏体不锈钢中液析碳化物在高温均匀化过程中的演化. 压力容器. 2022(04): 9-16 .
    16. 陈晔,姚屏,郑振兴,宾坤,陈美沂. 双脉冲MIG焊工艺参数对316L不锈钢焊缝成形及性能影响研究. 自动化与信息工程. 2022(03): 1-6+14 .
    17. 赵东升,龙代发,牛堂仁,胡鑫,刘玉君. 316L不锈钢电弧增材制造的微观组织和力学性能. 船舶工程. 2022(09): 14-17+88 .
    18. 王卫军,郭紫威,代孝红,王鑫. 汽车液压油缸316L不锈钢复合增材工艺及性能研究. 应用激光. 2022(12): 59-65 .
    19. 李宗玉,张兆栋,贺雅净,王旭,原思宇,刘黎明. 316不锈钢低功率脉冲激光诱导TIG电弧增材制造组织研究. 焊接技术. 2021(05): 8-12 .
    20. 张兆栋,何胜斌,王奇鹏,靳佩昕,刘黎明. 电弧增材制造工艺方法、增材焊料及后处理的研究现状. 电焊机. 2021(08): 1-10+176 .
    21. 杨义成,陈健,黄瑞生,徐锴,孙谦,杜兵. 空心钨极焊接关键技术问题及发展现状. 焊接. 2021(05): 1-8+63 .
    22. 张心保,王志斌,纪平,赵振铎,范光伟. 奥氏体不锈钢中微量元素致焊接缺陷实例分析. 焊接. 2021(05): 47-51+66 .
    23. 刘黎明,贺雅净,李宗玉,张兆栋. 不同路径下316不锈钢电弧增材组织和性能. 焊接学报. 2020(12): 13-19+97-98 . 本站查看

    Other cited types(17)

Catalog

    Article views (572) PDF downloads (434) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return