Advanced Search
WU Dongsheng, HUA Xueming, YE Dingjian, ZHANG Jing. Numerical analysis of humping formation in high speed GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 5-8.
Citation: WU Dongsheng, HUA Xueming, YE Dingjian, ZHANG Jing. Numerical analysis of humping formation in high speed GMAW process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(10): 5-8.

Numerical analysis of humping formation in high speed GMAW process

More Information
  • Received Date: October 18, 2014
  • The convection difference between normal speed and high speed GMAW processes was investigated using the numerical simulation, a high speed photography system was used to capture the transient images of the weld pool, and the humping formation in high speed GMAW process was also discussed. The results show that at the longitudinal sectional view of the weld pool behind the arc, both counterclockwise circulation and outward fluid flow pattern exist in normal speed GMAW process, only counterclockwise circulation exists in high speed GMAW process. Two main factors are responsible for the humping formation, one is that the high momentum of the backward fluid flow causes the initiation and growth of swelling, and the other is that the unbalance of normal surface tension force in the welding direction promotes the shrinkage of liquid channel. Any measures that help reduce the surface tension can inhibit the formation of humping.
  • Bradstreet B J. Effect of surface tension and metal flow on weld bead formation[J]. Welding Journal, 1968, 47(7): 314s-322s.
    Mills K C, Keene B J. Factors affecting variable weld penetration[J]. International Materials Reviews, 1990, 35(1): 185-216.
    Nguyen T C, Weckman D C, Johnson D A, et al. The humping phenomenon during high speed gas metal arc welding[J]. Science and Technology of Welding & Joining, 2005, 10(4): 447-459.
    Nguyen T C, Weckman D C, Johnson D A. Predicting onset of high speed gas metal arc weld bead defects using dimensional analysis techniques[J]. Science and Technology of Welding & Joining, 2007, 12(7): 634-648.
    Cho M H, Farson D F. Understanding bead hump formation in gas metal arc welding using a numerical simulation[J]. Metallurgical and materials transactions B, 2007, 38(2): 305-319.
    Chen M J, Wu C S. Numerical analysis of forming mechanism of hump bead in high speed GMAW[J]. Welding in the World, 2010, 54(9): 286-291.
    杨战利, 张善保, 杨永波, 等. 粗丝高速MAG焊驼峰焊道形成机理分析[J]. 焊接学报, 2013, 34(1): 61-64. Yang Zhanli, Zhang Shanbao, Yang Yongbo, et al. Study on humping bead formation mechanism in thick-wire high-speed MAG welding[J]. Transactions of the China Welding Institution, 2013, 34(1): 61-64.
    常云龙, 路林, 李英民, 等. 磁控TIG高速焊焊缝成形机理[J]. 焊接学报, 2013, 34(6): 1-4. Chang Yunlong, Lu Lin, Li Yingming, et al. Mechanism of weld formation during high speed TIG welding with external magnetic fields[J]. Transactions of the China Welding Institution, 2013, 34(6): 1-4.
    娄小飞, 陈茂爱, 武传松, 等. 高速TIG-MIG复合焊焊缝驼峰及咬边消除机理[J]. 焊接学报, 2014, 35(8): 87-90. Lou Xiaofei, Chen Maoai, Wu Chuansong, et al. Humping and undercutting suppression mechanism for high speed TIG-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2014, 35(8): 87-90.
    Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical & Materials Transactions B, 1984, 15(2): 299-305.
    吴东升, 华学明, 叶定剑, 等. MIG焊接熔池形成与凝固过程数值模拟[J]. 焊接, 2015(9): 6-11. Wu Dongsheng, Hua Xueming, Ye Dingjian, et al. Numerical analysis of weld pool formation and solidification in MIG process[J]. Welding & Joining, 2015(9): 6-11.
  • Related Articles

    [1]XIAO Xianfeng, LU Cong, ZHOU Jiawei, LI Yulong, FU Yanshu. Effect of beam incident angle on weld mechanical properties and melt pool flow behavior in laser deep penetration welding of 304 stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 46-52. DOI: 10.12073/j.hjxb.20230715001
    [2]ZHU Libin, WANG Qian, PAN Xuanjun, LI Siliang, GE Xing, ZHANG Heng, LIU Haijiang. Flow characteristics and element distribution of melten pool in 22MnB5 laser welding with Al-Si coating[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(6): 1-11. DOI: 10.12073/j.hjxb.20230614003
    [3]KUANG Xiaocong, QI Bojin, YANG Jianping, LU Yingyan. Study on the behavior of high-frequency pulsed TIG arc and molten pool flow of Inconel-52M welding wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(1): 1-9. DOI: 10.12073/j.hjxb.20230309005
    [4]ZHOU Xiangman, FU Zichuan, BAI Xingwang, TIAN Qihua, FANG Dong, FU Junjian, ZHANG Haiou. Numerical simulation of the effect of wire feeding speed on the molten pool flow and weld bead morphology of WAAM[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(5): 109-116. DOI: 10.12073/j.hjxb.20220603001
    [5]MAO Zhiwei, HUANG Tao, ZHOU Shaoling. Dynamic simulation of GMAW short circuiting transfer pool in rotating arc surfacing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 44-49. DOI: 10.12073/j.hjxb.20190528002
    [6]FANG Jimi, WANG Kehong, HUANG Yong. Weld pool image recognition of humping formation process in high speed GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 42-46. DOI: 10.12073/j.hjxb.2019400039
    [7]LI Liqun, HAO Yu, PENG Jin. Effect of surface tension on flow in laser deep penetration welding molten pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(2): 13-19. DOI: 10.12073/j.hjxb.2019400034
    [8]LU Hao, XING Jingwei, XING Liwei, LIANG Zhimin. Arc morphology and weld pool flowing in A-MAG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(10): 41-44.
    [9]LOU Xiaofei, CHEN Maoai, WU Chuansong, YE Keli. Humping and undercutting suppression mechanism for high speed TIG-MIG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(8): 87-90.
    [10]LIU Shuangyu, ZONG Shishuai, LIU Fengde, ZHANG Hong. Behaviors of element density distribution and melting metal flow in CO2 laser-MAG hybrid welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (1): 17-20.
  • Cited by

    Periodical cited type(4)

    1. 林添祥,冯美艳,练国富,陈昌荣,兰如清. 合金元素对激光熔覆高熵合金涂层硬度影响的研究进展. 精密成形工程. 2024(05): 201-224 .
    2. 张昆,李美求,魏轲,冯鹏云. 抗冲蚀磨损涂层制备技术及机理的研究进展. 焊接. 2022(04): 9-16 .
    3. 张志彬,张舒研,陈永雄,高洋洋,梁秀兵. 合金组元与含量对激光熔覆高熵合金涂层的影响研究综述. 中国表面工程. 2021(05): 76-91 .
    4. 鲁一荻,张骁勇,彭志刚. 合金元素对激光熔覆高熵合金涂层影响的研究进展. 焊接. 2021(10): 8-14+24+61 .

    Other cited types(5)

Catalog

    Article views (448) PDF downloads (383) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return