Citation: | LE Jian, ZHANG Hua, ZHANG Qiqi, WU Jinhao. Overhead weld tracking by robots based on rotating arc sensor[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 56-60. |
毛志伟, 张华, 郑国云. 旋转电弧传感弯曲焊缝移动焊接机器人结构设计[J]. 焊接学报, 2005, 26(11): 51-54. Mao Zhiwei, Zhang Hua, Zheng Guoyun. The mobile welding robot structure design about bending weld based on rotating arc sensor[J]. Transactions of the China Welding Institution, 2005, 26(11): 51-54.
|
乐健, 张华, 叶艳辉, 等. 小弯曲角焊缝跟踪及焊缝终点检测[J]. 焊接学报, 2015, 36(9): 21-25. Le Jian, Zhang Hua, Ye Yanhui, et al. Tracking of fillet weld with small bending angle and detecting of weld seam endpoint[J]. Transactions of the China Welding Institution, 2015, 36(9): 21-25.
|
乐健, 张华, 叶艳辉, 等. 机器人基于电弧传感器对90°折线角焊缝的跟踪[J]. 机器人, 2014, 36(4): 419-424. Le Jian, Zhang Hua, Ye Yanhui, et al. Right-angle weld tracking by robot based on arc sensor[J]. Robot, 2014, 36(4): 419-424.
|
Gonzalez R C, Woods R E. Digital Image Processing[M]. 3th, Beijing: Publish House of Electronics Industry, 2010.
|
高延峰. 移动机器人旋转电弧传感焊枪偏差与倾角检测及角焊缝跟踪[D]. 南昌: 南昌大学, 2008.
|
高延峰, 张华, 毛志伟, 等. 旋转电弧传感器焊枪偏差信息识别方法[J]. 焊接学报, 2008, 29(4): 57-60. Gao Yanfeng, Zhang Hua, Mao Zhiwei, et al. Welding torch deviation information identification method based on rotating arc sensor[J]. Transactions of the China Welding Institution, 2008, 29(4): 57-60.
|
[1] | GONG Baoming, ZHAO Chenyan, ZHAO Haiwei, ZHAO Zifeng, DAI Lianshuang, Deng Caiyan. The ductile-to-brittle transition behavior and determination method in X80 pipeline girth welds utilizing the master curve method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240123001 |
[2] | YAN Han, ZHAO Di, QI Tongfu, LENG Xuesong, FU Kuijun, HU Fengya. Effect of element Nb on microstructures and impact toughness of CGHAZ in TiNbV micro-alloyed steels[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 33-37. DOI: 10.12073/j.hjxb.20200906001 |
[3] | ZHANG Chao, CUI Lei, ZHANG Hengquan, WANG Jing, ZHANG Ran, HOU Ailin. Properties for the electron beam welds and friction stir welds of 9Cr-1.5W-0.15Ta heat resistant steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(11): 13-17. DOI: 10.12073/j.hjxb.20200401003 |
[4] | DENG Caiyan, SONG Mengmeng, GONG Baoming, WANG Dongpo. Effect of specimen thickness on the shift of the ductile-to-brittle transition curve[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 1-4. DOI: 10.12073/j.hjxb.2018390110 |
[5] | LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96. |
[6] | HU Jie, JIANG Zhizhong, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, ZHANG Hua. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (11): 67-71. |
[7] | JING Hong-yang, XU Lian-yong, HUO Li-xing, ZHANG Yu-feng. Prediction of fracture toughness for welded joints in brittle-ductile transition temperture[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 45-47,51. |
[8] | LU Qing-hua, ZHANG Yu-feng, HUO Li-xing, ZHANG Li. Effect of prestrain on impact toughness and ductile-brittle transition temperature of welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2003, (6): 43-46. |
[9] | Ma Hang, Wang Zheng, Zhu Liang. Correlation between transition temperatures of Chaipy-V energy and COD of low and medium strength steels and weld metals[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 239-246. |
[10] | Ma Jin. EFFECT OF TRACE BORON ON IMPACT TOUGHNESS[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1988, (3): 155-161. |