Advanced Search
ZHANG Hua, ZHUANG Qianyu, ZHANG He. Analysis of intergranular corrosion of friction stir welded 2219 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 79-82.
Citation: ZHANG Hua, ZHUANG Qianyu, ZHANG He. Analysis of intergranular corrosion of friction stir welded 2219 aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 79-82.

Analysis of intergranular corrosion of friction stir welded 2219 aluminium alloy

More Information
  • Received Date: October 14, 2014
  • The intergranular corrosion behavior of friction stir welded 2219 aluminium alloy was investigated. Microstructure, micro-hardness, corrosion morphology and corrosion depth were studied to analyze the difference between BM and WNZ, and intergranular corrosion mechanism of FSW joint was preliminary discussed. The results show that WNZ consists of fine equiaxed grains, and the grain size on top surface is slightly bigger than that on root surface. The highest microhardness is located in the BM while the lowest in the WNZ on root surface. The corrosion resistance of WNZ is much superior than that of BM, and WNZ on top surface is slightly superior than that on root surface. The maximum corrosion depth in BM is 145.9 μm while the maximum corrosion depths in WNZ on top surface and root surface are 46.3 μm and 84.1μm respectively.
  • 孟庆国, 方洪渊, 徐文立, 等. 2219铝合金双丝焊热影响区组织及力学性能[J]. 焊接学报, 2006, 27(3):9-12. Meng Qingguo, Fang Hongyuan, Xu Wenli, et al. Microstructure and mechanical properties of 2219 Al-alloy heat-affected zone with twin wire welding[J]. Transactions of the China Welding Institution, 2006, 27(3):9-12.
    Dawes C, Thomas W M. Friction stir joining of aluminum alloys[C]. Bulletin 6, TWI, December 1995:124.
    邢美源, 姚君山, 刘杰. 新一代运载贮箱搅拌摩擦焊应用研究[J]. 上海航天, 2006, 23(4):39-43. Xing Meiyuan, Yao Junshan, Liu Jie. Application research of FSW welding process for joining propellant tanks in new generation launch vehicle[J]. Aerospace Shanghai, 2006, 23(4):39-43.
    张华, 张贺, 孙大同, 等. 2219铝合金母材及搅拌摩擦焊接头应力腐蚀敏感性[J]. 焊接学报, 2014, 35(12):7-10. Zhang Hua, Zhang He, Sun Datong, et al. Stress corrosion cracking susceptibility of 2219 aluminium alloy parent metal and friction stir weldment[J]. Transactions of the China Welding Institution, 2014, 35(12):7-10.
    Xu W, Liu J. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate[J]. Corrosion Science, 2009, 51(11):2743-2751.
    Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint[J]. Corrosion Science, 2011, 53(9):3026-3034.
    Xu W, Liu J, Zhu H. Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution[J].Electrochimica Acta, 2010, 55(8):2918-2923.
    Kang J, Fu R, Luan G, et al. In-situ investigation on the pitting corrosion behavior of friction stir welded joint of AA2024-T3 aluminium alloy[J]. Corrosion Science, 2010, 52(2):620-626.
    Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behavior of friction stir welded AA 2024-T351[J]. Corrosion Science, 2007, 49(2):877-909.
    张华, 孙大同, 张贺, 等. 2219铝合金搅拌摩擦焊接头腐蚀行为[J]. 焊接学报, 2014, 35(7):39-42. Zhang Hua, Sun Datong, Zhang He, et al. Corrosion behavior of friction stir welded 2219 aluminum alloy[J]. Transactions of the China Welding Institution, 2014, 35(7):39-42.
  • Related Articles

    [1]LIANG Hui, LI Pan, SHEN Xin, CHEN Lifan, DAI Junhui, LI Dong, YANG Dongqing. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 79-85, 119. DOI: 10.12073/j.hjxb.20230304003
    [2]WANG Hongfeng, WANG Jianli, ZUO Dunwen, SONG Weiwei, DUAN Xinglin. Finite element analysis on friction stir welding of aviation aluminum alloy plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(5): 21-25.
    [3]ZHU Hai, GUO Yanling, ZHANG Shanshan. Finite element analysis of thermal-mechanical coupled model for friction welded joint of 35Cr2Ni4MoA high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (4): 81-84.
    [4]HONG Bo, LI Lin, HONG Yuxiang, YANG Jiawang. Finite element analysis of magnetic control arc welding seam tracking sensors[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (7): 5-8.
    [5]HU Qingxian, WANG Yanhui, YAO Qingjun, WANG Shunyao. Finite element analysis of temperature field during keyholeplasma arc welding using SYSWELD software[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (12): 66-69.
    [6]YE Huan, XUE Songbai, ZHANG Liang, WANG Hui. Finite element analysis on reliability of lead-free soldered joints for CSP device[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (11): 93-96.
    [7]YANG Iinjuan, SHEN Shiming. Finite element analysis of residual stress of welding repair for gas pipeline[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (12): 77-80.
    [8]GAO Jiashuang, YANG Jianguo, FANG Hongyuan, SHI Wenyong, SHANG Haibo. FEA preprocessing system of welding analysis based on VRML[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (4): 93-96.
    [9]WANG Huai-gang, WU Chuan-song, ZHANG Ming-xian. Finite element method analysis of temperature field in keyhole plasma arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (7): 49-53.
    [10]WU Yan-qing, PEI Yi, YANG Yong-xing, ZHANG Jian-xun. Finite Element Analysis of Transformation Super-plastic Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2000, (4): 65-68.

Catalog

    Article views (277) PDF downloads (345) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return