Advanced Search
HUANG Yong, LI Hui, WANG Xinxin, YAO Yuhang. Numerical simulation of effects of different driving force on surface deformation of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 45-49.
Citation: HUANG Yong, LI Hui, WANG Xinxin, YAO Yuhang. Numerical simulation of effects of different driving force on surface deformation of weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(8): 45-49.

Numerical simulation of effects of different driving force on surface deformation of weld pool

More Information
  • Received Date: September 10, 2014
  • A three-dimensional transient mathematical model of weld pool for a stationary tungsten inert gas welding was established based on the fluid dynamic equations. In this model, enthalpy-porosity method was used to handle liquid-solid phase change, VOF method was employed to track the free surface deformation of the weld pool. By solving these equations, the deformation behavior of surface and the distributions of temperature and velocity were obtained under the independent action by buoyancy, Marangoni force, electromagnetic force and arc pressure, respectively. The results indicate that,at high welding current (I≥250 A), a surface projection forms in weld pool when buoyancy, Marangoni force with positive temperature coefficient of surface tension and electromagnetic force were acted independently, while a surface depression formsunder the action of arc pressure, Marangoni force with negative temperature coefficient of surface tension. At high welding current, weld pool depression phenomenon appears for both TIG welding and activated flux TIG welding. For TIG welding, there exists an inward vortex in the central zone of the weld pool, while a outward vortex appears in the periphery.For activated flux TIG welding, two inward vortexes are induced by different factors in the central zone and periphery of the weld pool,respectively. The magnitude of surface deformation was not superimposed simply by each driving force.
  • Oreper G M, Szekely. Heat and fluid flow phenomena in weld pools[J]. Journal of Fluid Mechanics, 1984, 147(10):53-79.
    Zacharia T, David S A, Vitek J M, et al. Computational modeling stationary gas-tungsten-arc weld pools and comparison to stainless steel-304 experimental results[J]. Metallurgical Transactions B-Process Metallurgy, 1991, 22(2):243-257.
    Choo R T C, Szekely J, David S A. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles:Part Ⅱ-modeling the weld pool and comparison with experiments[J]. Metallurgical Transactions B-Process Metallurgy, 1992, 23(3):371-378.
    陆善平, 董文超, 李殿忠, 等. 电弧特性及其对熔池形貌影响的数值模拟[J]. 物理学报, 2009, 58:S94-S103. Lu Shanping, Dong Wenchao, Li Dianzhong, et al. Numerical simulationof arcproperties and their effects on the weld shape[J]. Acta Physica Sinica, 2009, 58(Z1):S94-S103.
    Tanaka M, Terasaki H, Ushi M, et al. A unified numerical modeling of stationary tungsten-inert-gas welding process[J]. Metallurgical & Materials Transactions A, 2001, 33(7):2043-2052.
    Wang X X, Fan D, Huang J K, et al. A unified model of coupled are plasma and weld pool for double electrodes TIG welding[J]. Journal of Physics D:Applied Physics, 2014, 47(27):275202(14).
    Choo R T C, Szekely J, Westhoff R C. Modeling of high-current arcs with emphasis on free surface[J]. Welding Journal, 1990, 69(9):346s-361s.
    雷永平, 顾向华, 史耀武, 等. GTA焊接电弧与熔池系统的双向耦合数值模拟[J]. 金属学报, 2001, 37(5):537-542 Lei Yongping, Gu Xianghua, Shi Yaowu, et al. Numerical analysis of the two-way interaction between a mutually coupled weld-pool and weld-arc for GTA welding process[J]. Acta Physica Sinica, 2001, 37(5):537-542.
    黄勇, 刘瑞琳, 樊丁, 等. 气体熔池耦合活性TIG焊方法[J]. 焊接学报, 2012, 33(9):13-16. Huang Yong, Liu Ruilin, Fan Ding, et al. Gas pool coupled activating TIG welding method[J]. Transactions of the China Welding Institution, 2012, 33(9):13-16.
    Voller V R, Prakash C. A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat Mass Transfer, 1987, 30(8):1709-1719.
    Hirt C W, Nichols B D. Volume of Fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
    Kothe D B, Mjolsness R C. A new model for incompressible flows with free surfaces[J]. American Institute of Aeronautics and Astronautics, 1992, 30(11):2694-2700.
    武传松. 焊接热过程与熔池形态[M]. 北京:机械工业出版社, 2008.
    叶政钦, 刘启鹏, 李星红, 等. 复杂两相流中界面追踪方法-VOSET的性能分析[J]. 化工学报, 2011, 62(6):1524-1530. Ye Zhengqin, Liu Qipeng, LI Xinghong, et al. Performance analysis of interface tracking method for complex two-phase flows-VOSET[J]. CIESC Journal, 2011, 62(6):1524-1530.
  • Related Articles

    [1]ZHOU Hao, CHEN Shanben. A MLMP welding pool classification model for medium-thick low-carbon steel plates based on a VGGNet with a visual attention mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 71-76. DOI: 10.12073/j.hjxb.20240710001
    [2]ZHANG Gang, XU Zilong, WANG Kaifei, ZHU Ming, SHI Yu. Analysis of arc and weld pool characteristics in direct current added-pulsed TIG welding process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(2): 75-81. DOI: 10.12073/j.hjxb.20210524003
    [3]CHEN Qihao, LIN Sanbao, YANG Chunli, FAN Chenglei, YAN Jiuchun. Effect of different ultrasonic action stages on grain crystallization in TIG weld pool[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(3): 29-32, 44. DOI: 10.12073/j.hjxb.20190826001
    [4]YANG Jialin, GAO Jinqiang, QIN Guoliang, HE Jianguo, WU Chuansong, ZHANG Tao. Vision-based checking and image processing for melt pool of laser deep penetration welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2011, (11): 21-24.
    [5]SUN Yongxing, ZHAI Lei, ZHAO Ming. Numerical simulation of weld pool geometry and surfaces deformation in GMAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (10): 39-42.
    [6]ZHAO Ming, ZHAI Lei, SUN Yongxing. Improvement on numerical analysis precision of surface deformation of molten pool in fully-penetrated GTAW[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (11): 21-24.
    [7]WANG Zhijiang, ZHANG Guangjun, GAO Hongming, WU Lin. Dynamic monitoring of weld pool image for pulsed GTAW in welding scene[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (9): 47-50.
    [8]YAN Zhi-hong, ZHANG Guang-jun, QIU Mei-zhen, GAO Hong-ming, WU Lin. Monitoring and processing of weld pool images in pulsed gas metal arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (2): 37-40.
    [9]LU Feng-gui, YAO Shun, LOU Song-nian, ZHANG Yu-xin. Effects of weld pool surface deformation on behavior characters of welding arc[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 57-60.
    [10]CAO Yi-peng, CHEN Qiang, SUN Zhen-guo. Pool image sensor for CO2 short circuiting arc welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (2): 1-4.
  • Cited by

    Periodical cited type(6)

    1. 解远航,蓝永庭,张政,丁浩川,柯昌锐. 增材制造中2219铝合金熔池温度演化与微孔隙形成仿真分析. 应用激光. 2025(03): 1-12 .
    2. 郭鑫鑫,魏正英,张永恒,张帅锋. 电弧增材制造传热传质数值模拟技术综述. 材料导报. 2024(09): 190-196 .
    3. 李渊博,郑文星,叶韬,麻帅川,赵锡龙. 钨极惰性气体保护焊熔池流动特性研究方法. 机械工程材料. 2022(04): 12-20 .
    4. 周祥曼,王礴允,袁有录,柏兴旺,田启华,付君健,杜义贤. 焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究. 机械工程学报. 2022(10): 103-111 .
    5. 许潘,杨泽锋,魏文赋,高国强,吴广宁. 降弓电弧对接触线侵蚀的仿真研究. 高电压技术. 2019(11): 3529-3538 .
    6. 张明杰,黄利军,李恒正,孟瑶,李雪飞. 基于有限元仿真的钛合金翼形件锻造过程. 锻压技术. 2016(11): 32-38 .

    Other cited types(13)

Catalog

    Article views (321) PDF downloads (163) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return