Advanced Search
WANG Xinhong, ZOU Zengda, QU Shiyao. Laser cladding of in-situ TiB_2-TiC particles reinforced Fe-based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 25-28.
Citation: WANG Xinhong, ZOU Zengda, QU Shiyao. Laser cladding of in-situ TiB_2-TiC particles reinforced Fe-based coatings[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2012, (8): 25-28.

Laser cladding of in-situ TiB_2-TiC particles reinforced Fe-based coatings

More Information
  • Received Date: June 13, 2011
  • In-situ TiB2-TiC particles reinforced Fe-based coatings were produced on carbon steel substrate by laser melting of mixture of B4C, TiO2, graphite and Fe-based self-melting alloy powders.The phase structure and microstructure was investigated with XRD and SEM.Meanwhile, the microhardness and wear properties of the coatings were tested with the micro-vickers and block-on-ring wear testing machine.The results showed that TiB2 and TiC ceramic particles were synthesized from the reaction of B4C+TiO2+C during laser cladding process, and the TiB2 and TiC particles were uniformly distributed in the coating.The amount of TiC decreased with the increase of laser power density.The microhardness and wear resistance of coatings were higher than those of 45 steel substrate.
  • Related Articles

    [1]TIAN Zhigang, LI Xinmei, QIN Zhong, YANG Xianchen, LIU Weibin, ZHANG Peijun. Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 53-63. DOI: 10.12073/j.hjxb.20220305001
    [2]MA Qiang, CHEN Mingxuan, MENG Junsheng, LI Chengshuo, SHI Xiaoping, PENG Xin. Microstructure and wear resistance of TiB2/Ni composite coating on pure copper surface by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(9): 90-96. DOI: 10.12073/j.hjxb.20210202002
    [3]TIAN Lihui, MAO Shuhua, LU Sheng, YAO Zengjian. Microstructure and wear-resistance of NiCrBSi coating sprayed-remelted by plasma process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 89-94,113.
    [4]WANG Yongdong, LIU Xing, ZHENG Guanghai, ZHAO Xia. Microstructure and properties of in-situ synthesized TiC-TiB reinforced Fe based composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 67-70.
    [5]WANG Zhenting, GAO Hongming, LIANG Gang, DING Yuanzhu. Microstructure and wear resistance of Ti-based composite coating reinforced by in-situ synthesized TiC and TiB2 particulates on surface of Ti6Al4V alloy with arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2014, 35(11): 51-54.
    [6]MENG Junsheng, JI Zesheng. Microstructure and properties of in-situ TiC-TiB2/Ti composite coating by argon arc cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 67-70.
    [7]ZHANG Xiaodong, DONG Shiyun, WANG Zhijian, YAN Shixing, XU Binshi, Li Qingfen. Microstructure and wear resistance of clad layer on laser remanufacturing metal pieces[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2010, (2): 75-78.
    [8]HE Qingkun, WANG Yong, ZHAO Weimin, CHENG Yiyuan. Interface microstructure and wear properties of TiC-Ni-Mo coatings prepared by in-situ fabrication of laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2009, (1): 77-80100.
    [9]YUAN Xiaomin, GONG Youpin, HE Yizhu. Effect of TiB2 on microstructure and properties of Ni-based alloy coating by laser cladding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (5): 41-44.
    [10]SONG Sili, ZOU Zengda, WANG Xinhong, LI Qingming. Microstructure and wear-resisting property of TiC particle reinforced coatings claded by TIG welding with multiple layer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2007, (4): 33-37.

Catalog

    Article views (245) PDF downloads (76) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return