Citation: | WANG Yu, GAO Da-lu, LIAO Ming-fu, FENG Jing. A model of artificial neural network for optimizing technological parameter of friction welding of dissimilar material[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2005, (4): 33-36. |
[1] | MA Yiming, GUO Xiao, HAN Ying, JIANG Yinglong, LIU Zicheng, GAN Hongfeng, SONG Changhong. Influence mechanism of heat input on the low-temperature impact toughness of the coarse grain heat affected zone of ultra-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(12): 90-98. DOI: 10.12073/j.hjxb.20240709003 |
[2] | ZENG Daoping, ZHENG Shaoxian, AN Tongbang, DAI Haiyang, MA Chengyong. Study on microstructure and low-temperature impact toughness of deposited metal form covered electrodes for 440 MPa grade high-strength steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(3): 120-128. DOI: 10.12073/j.hjxb.20230318002 |
[3] | BAO Liangliang, PAN Chunyu, LIU Fujian, ZHANG Xinming, HAN Tao. Microstructure and impact toughness of laser-arc hybrid welding simulated heat affected zone of high strength low alloy steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(5): 90-97. DOI: 10.12073/j.hjxb.20210817001 |
[4] | LI Liying, WANG Xiaolei, LIU Zhenhong, ZHOU Cong, HAN Bin. Microstructure and low temperature toughness of HAZ of domestic 06Ni9DR Steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 91-96. DOI: 10.12073/j.hjxb.20200202002 |
[5] | LIU Zhengjun, QIN Hua, SU Yunhai, LIU Changjun, LU Yanpeng. Microstructure and low temperature impact toughness of vibration assisted welded BWELDY960Q steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 93-96. |
[6] | WU Bingzhi, JING Wen, XU Yujun, SUN Jingtao, WANG Xuyou. Analysis on microstructure and impact absorbed energy of 960 MPa deposited metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(6): 77-80. |
[7] | LIU Renpei, CAI Yongchuan, WEI Yanhong, CHENG Zhonggeng. Effect of yttrium oxide on microstructure and mechanical properties of in high strength steel weld metal[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(4): 92-96. |
[8] | ZHANG Lihong, CHEN Furong. Welding of low-temperature steel 07MnNiCrMoVDR and its low-temperature impact toughness[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (6): 68-72. |
[9] | WANG Guoping, CHEN Xuedong, WANG Bing. Low temperature toughness of ultra low-carbon 9Ni steel welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (3): 37-40. |
[10] | Xu Hongji, Zhang Wenzhong, Wang Jichang, Zhang Wenyue. Microstructure and Toughness of Welded Joints Between Austenitic Manganese Steel and Rail Steel by Double Flash Butt Welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1999, (1): 50-56. |