Advanced Search
HE Zhaoguo, ZHOU Dianwu, DENG Qiao, YANG Jiahao, WANG Xinyu. Influence of laser parameters on the steel/CFRP interface width and its predictive modeling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 36-45. DOI: 10.12073/j.hjxb.20240901002
Citation: HE Zhaoguo, ZHOU Dianwu, DENG Qiao, YANG Jiahao, WANG Xinyu. Influence of laser parameters on the steel/CFRP interface width and its predictive modeling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 36-45. DOI: 10.12073/j.hjxb.20240901002

Influence of laser parameters on the steel/CFRP interface width and its predictive modeling

More Information
  • Received Date: August 31, 2024
  • Available Online: February 20, 2025
  • The steel/CFRP interface bonding is determined by the melting width of CFRP in the direct steel/CFRP laser joining, while laser heat input is the major factor affecting the melting width. In this paper, the experiment of steel/CFRP direct laser joining was conducted and a BP neural network prediction model of the CFRP melting width was explored based on MLP and SVM, and the BP neural network was optimized by the AOA algorithm. Meanwhile, based on the RSM analysis, the weights of beam scanning rate, defocusing and laser power on the melting width were studied, and laser energy density distribution was calculated. The results indicate that the related coefficients R in the training, test and validation set of AOA-BP neural network are 0.96296, 0.97009, 0.98828, respectively, which means that the established AOA-BP prediction model exhibits well prediction accuracy and generalization capability. Furthermore, the results of RSM reveal that the descending order of the weights of laser parameters influencing the melting width is as follows: beam scanning rate, defocusing, and laser power. The increase in defocusing serves to flatten the laser energy density distribution, expanding the coverage area of beam energy.

  • [1]
    Wang K, Shriver D, Li Y, et al. Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites[J]. Journal of Manufacturing Processes, 2017, 29: 124 − 132. doi: 10.1016/j.jmapro.2017.07.024
    [2]
    Kashaev N, Ventzke V, Riekehr S, et al. Assessment of alter-native joining techniques for Ti-6Al-4V/CFRP hybrid joints regarding tensile and fatigue strength[J]. Material Design, 2015, 81: 73 − 81. doi: 10.1016/j.matdes.2015.04.051
    [3]
    Li J, Zhang K, Li Y, et al. Influence of interference-fit size on bearing fatigue response of single-lap carbon fiber reinforced polymer/Ti alloy bolted joints[J]. Tribology International, 2016, 93: 151 − 162. doi: 10.1016/j.triboint.2015.08.044
    [4]
    Sairajan K, Aglietti G, Mani K. A review of multifunctional structure technology for aerospace applications[J]. Acta Astonaut, 2016, 120: 30 − 42. doi: 10.1016/j.actaastro.2015.11.024
    [5]
    Pramanik A, Basak A K, Dong Y, et al. Joining of carbon fiber reinforced polymer (CFRP) composites and aluminium alloys -a review[J]. Composite, Part A: Applied Science and Manufacturing, 2017, 101: 1 − 29. doi: 10.1016/j.compositesa.2017.06.007
    [6]
    Pan X, Wang X, Tian Z, et al. Effect of dynamic recrystallization on texture orientation and grain refinement of Ti6Al4V titanium alloy subjected to laser shock peening[J]. Journal of Alloy Compounds, 2021, 850: 156672. doi: 10.1016/j.jallcom.2020.156672
    [7]
    He Z, Zhou D, Zhou S, et al. Effect of linear heat input on the interface and mechanical properties of steel/CFRP laser welding joint[J]. Composite Structures, 2024, 324: 117652.
    [8]
    Xia H, Ma Y, Chen C, et al. Influence of laser welding power on steel/CFRP lap joint fracture behaviors[J]. Composite Structures, 2022, 285: 115247. doi: 10.1016/j.compstruct.2022.115247
    [9]
    Su J, Tan C, Wu Z, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J]. Optics and Laser Technology, 2020, 124: 106006. doi: 10.1016/j.optlastec.2019.106006
    [10]
    Hao K, Liao W, Zhang T, et al. Interface formation and bonding mechanisms of laser transmission welded composite structure of PET on austenitic steel via beam oscillation[J]. Composite Structures, 2022, 235: 111752.
    [11]
    Ai Y, Lei C, Cheng J, et al. Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy[J]. Optics and Lasers in Engineering, 2023, 160: 107258. doi: 10.1016/j.optlaseng.2022.107258
    [12]
    Li Y, Lee T, Wang C, et al. An artificial neural network model for predicting joint performance in ultrasonic welding of composites[J]. Procedia CIRP, 2018, 76: 85 − 88. doi: 10.1016/j.procir.2018.01.010
    [13]
    邹丽, 杨鑫华, 孙屹博, 等. 基于RS-RBFNN的钛合金焊接接头疲劳寿命预测[J]. 焊接学报, 2015, 36(4): 25 − 29.

    Zou Li, Yang Xinhua, Sun Yibo, et al. Fatigue life prediction of titanium alloy welded joints based on RS-RBFNN[J]. Transactions of the China Welding Institution, 2015, 36(4): 25 − 29.
    [14]
    邱广宇, 耿健, 史少聪, 等. 基于卷积神经网络的焊接接头疲劳寿命预测[J]. 现代制造技术与装备, 2024(60): 8.

    Qiu Guangyu, Geng Jian, Shi Shaocong, et al. Fatigue life prediction of welded joints based on convolutional neural network[J]. Modern Manufacturing Technology and Equipment, 2024(60): 8.
    [15]
    Hamidinejad S M, Kolahan F, Kokabi A H. The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing[J]. Material Design, 2012, 34: 759 − 767. doi: 10.1016/j.matdes.2011.06.064
    [16]
    Campbell S W, Galloway A M, McPherson N A. Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases[J]. Welding Journal, 2012, 91(6): 174s − 181s.
    [17]
    Nagesh D S, Datta G L. Prediction of weld bead geometry and prediction in shielded metal-arcwelding using neural networks[J]. Journal of Material Process Technology, 2002(79): 1 − 10.
    [18]
    Zhang Z, Tan X, Zhang J, et al. Suppression of shrinkage porosity in laser-joining of CFRP and steel using a laser surface modification process “Surfi-Sculpt”[J]. International Journal of Adhesion and Adhesives, 2018(85): 184 − 192.
    [19]
    Tan C, Su J, Zhu B, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J]. Optics and Laser Technology, 2020(129): 106273.
    [20]
    Hussein F, Salloomi K, E. Akman, et al. Finite element thermal analysis for PMMA/st.st.304 laser joining[J]. Optics and Laser Technology, 2017(87): 64 − 71.
    [21]
    Arkhurst B, Seol J, Lee Y, et al. Interfacial structure and bonding mechanism of AZ31/carbon-fiber-reinforced plastic composites fabricated by thermal laser joining[J]. Composite Part B, 2019, 167: 71 − 82.
    [22]
    Nagesh D S, Datta G L. Prediction of weld bead geometry and prediction in shielded metal-arc welding using neural networks[J]. Journal of Materials Processing Technology, 2002, 79: 1 − 10.
    [23]
    Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Network, 2004, 17(1): 113 − 26. doi: 10.1016/S0893-6080(03)00169-2
    [24]
    Vapnik C C V. Support-vector networks[J]. Machine Learning, 1995, 20: 273 − 97.
    [25]
    Zhang J, Yue X, Qiu J. A unified ensemble of surrogates with global and local measures for global metamodeling[J]. Engineering Optimization, 2020, 53(3): 474 − 495.
    [26]
    Abualigah L, Diabata A, Mirjalili S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376(1): 113609.
    [27]
    Box G E P. The exploration and exploitation of response surfaces: some general considerations and examples[J]. Biometrics, 1954, 10(1): 16 − 60. doi: 10.2307/3001663
    [28]
    Farshad M, Sadeh J. A novel fault-location method for HVDC transmission lines based on similarity measure of voltage signals[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2483 − 2490. doi: 10.1109/TPWRD.2013.2272436
    [29]
    Rai R, Kelly S, Martukanitz R, et al. A convective heat-transfer model for partial and full penetration keyhole mode laser welding of a structural[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2008, 1(39A): 98 − 112.
    [30]
    Schweier M, Heins J, Haubold M, et al. Spatter formation in laser welding with beam oscillation[C]//7th International WLT Conference on Lasers in Manufacturing, 2013: 20 − 30.
    [31]
    Siegman A, Townsend S. Output beam propagation and beam quality from a multimode stable-cavity laser[J]. IEEE Journal of Quantum Electronics, 1993, 29(4): 1212 − 1217. doi: 10.1109/3.214507
    [32]
    Shao K, Zhou Q, Chen Q, et al. Research progress of water-laser compoud machining technology[J]. Coatings, 2022, 12(12): 1887. doi: 10.3390/coatings12121887
    [33]
    Baldeck L, Raccahf, Alfano R. Observation of self-focusing in optical fibers with picosecond pulses[J]. Optics Letter, 1987, 12(8): 588 − 589. doi: 10.1364/OL.12.000588
  • Related Articles

    [1]HUANG Gang, ZHANG Qingdong, WANG Chunhai, ZHANG Boyang, KONG Ning. Experimental research on the blind hole-drilling method for measuring residual stress of steel plate[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(9): 49-59, 80. DOI: 10.12073/j.hjxb.20200403002
    [2]TONG Jiahui, HAN Yongquan, HONG Haitao, SUN Zhenbang. Mechanism of weld formation in variable polarity plasma arc-MIG hybrid welding of high strength aluminium alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(5): 69-72,91. DOI: 10.12073/j.hjxb.2018390125
    [3]HUANG Chaoqun1, LI Huan1, LUO Chuanguang1,2, SONG Yonglun3. Comparative study of blind hole method and indentation method in measuring residual stress of 2219 aluminum alloy arc-welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(7): 54-58. DOI: 10.12073/j.hjxb.20150710004
    [4]HONG Haitao, HAN Yongquan, TONG Jiahui, PANG Shigang. Study of arc shape and voltage-current characteristics in variable polarity plasma arc-MIG hybrid welding of aluminum alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(9): 65-69.
    [5]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part II:application[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (10): 33-36.
    [6]LI Hao, LIU Yihua. Residual stress field in hole-drilling method-part I:Theoretical analysis[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (9): 46-50.
    [7]YA Min, DAI Fu-long, LU Jian. Study on Residual Stress of Friction Stir Welding by Moiré Interferometry and Hole-Drilling Method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2002, (5): 53-56.
    [8]Chen Huaining, Chen Liangshan, Dong Xiuzhong. Drilling strains in measuring residual stress with hole-drilling strain-gage method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1994, (4): 276-280.
    [9]Meng Gongge. Reliability and precision of blind hole drilling method for determining high residual stresses[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1991, (4): 235-238.
    [10]Yu Xunman, Li Qingben, Wang Min. EFFECT OF THE INDUCED DRILLING STRAIN ON THE WELDING RESIDUAL STRESS MEASUREMENT BY BLIND-HOLE METHOD[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 1986, (4): 195-201.
  • Cited by

    Periodical cited type(3)

    1. 秦子濠,李湘文,郑学军,洪波,李继展,周芙蓉. 磁控焊缝跟踪传感器非对称纵向磁场下的焊缝识别. 焊接学报. 2023(05): 84-94+134 . 本站查看
    2. 刘文吉,杨嘉昇,岳建锋,肖宇. 基于P-GMAW摆动电弧传感的窄间隙坡口宽度自适应焊接. 材料科学与工艺. 2023(06): 29-36 .
    3. 钦超,吕学勤,王裕东,瞿艳. 基于激光位移传感器的焊缝检测系统设计. 上海电力学院学报. 2019(02): 171-174 .

    Other cited types(5)

Catalog

    Article views (59) PDF downloads (31) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return