Advanced Search
ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001
Citation: ZHAO Yufeng, SONG Laidong, WANG Hongyu, JIANG Yinfang, HU Zhanming. Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240721001

Influence of WC addition on the wear resistance mechanism of laser additively manufactured Fe-Mn-Si-Cr-Ni alloys

More Information
  • Available Online: January 21, 2025
  • Fe-17Mn-6Si-9Cr-5Ni alloys with varying WC concentrations (0-4 wt.%) were fabricated via laser wire deposition additive manufacturing. Their tribological performance under oil-lubricated conditions was systematically evaluated to elucidate the influence of WC content on wear resistance mechanisms. Results demonstrate a paradoxical trend: at ≤1 wt.% WC, increasing WC content enhances hardness but reduces wear resistance. This anomaly originates from the distinctive anti-wear behavior of ferrous shape memory alloys, where stress-induced martensitic transformation dominates tribological performance. At higher WC concentrations (2 ~ 4 wt.%), continued hardness improvement accompanies partial wear resistance recovery to baseline levels. Notably, the absence of martensite laths in subsurface wear zones indicates a mechanistic transition to WC particle-dominated dispersion strengthening. The 0.25 wt.% WC variant exhibits optimal wear resistance under the investigated conditions.

  • [1]
    JING Zhijie, XU Peng, WANG Ling, et al. High corrosion resistance of a novel armored super-hydrophobic Fe-Mn-Si-Cr-Ni coating [J]. Surface & Coatings Technology, 2024, 480 130565.
    [2]
    YANG Xiao, CHENG Lijin, PENG Huabei, et al. Development of Fe-Mn-Si-Cr-Ni shape memory alloy with ultrahigh mechanical properties and large recovery strain by laser powder bed fusion[J]. Journal of Materials Science & Technology, 2023, 150: 201 − 216.
    [3]
    朱长顺, 毛计洲, 王宏宇, 等. 粉芯丝材激光增材制造Fe-xMn-6Si-9Cr-5Ni合金记忆性能[J]. 焊接学报, 2023, 44(7): 102 − 108. doi: 10.12073/j.hjxb.20220819003

    ZHU Changshun, MAO Jizhou, WANG Hongyu, et al. Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire[J]. Transactions of the China Welding Institution, 2023, 44(7): 102 − 108. doi: 10.12073/j.hjxb.20220819003
    [4]
    朱建, 王宏宇, 史东辉, 等. 增材制造记忆合金的元素烧损行为及其补损分析[J]. 焊接学报, 2022, 43(9): 50 − 55. doi: 10.12073/j.hjxb.20220105001

    ZHU Jian, WANG Hongyu, SHI Donghui, et al. Element loss behavior and compensation of additive manufacturing memory alloy[J]. Transactions of the China Welding Institution, 2022, 43(9): 50 − 55. doi: 10.12073/j.hjxb.20220105001
    [5]
    TIAN Jiayu, XU Peng, CHEN Jianhua, et al. Microstructure and phase transformation behaviour of a Fe/Mn/Si/Cr/Ni alloy coating by laser cladding[J]. Optics and Lasers in Engineering, 2019, 122: 97 − 104. doi: 10.1016/j.optlaseng.2019.06.003
    [6]
    徐鹏, 尚晓娟, 朱益志, 等. 激光熔覆Fe17Mn5Si10Cr5Ni记忆合金涂层的应力释放研究[J]. 中国激光, 2017, 44(2): 263 − 268.

    XU Peng, SHANG Xiaojuan, ZHU Yizhi, et al. Stress release of Fe17Mn5Si10Cr5Ni shape memory alloy coating fabricated by laser cladding[J]. Chinese Journal of Lasers, 2017, 44(2): 263 − 268.
    [7]
    L. D , M. L. N , A. S , et al. Internal friction associated with ε martensite in shape memory steels produced by casting route and through additive manufacturing: Influence of thermal cycling on the martensitic transformation[J]. Journal of Alloys and Compounds, 2022, 919.
    [8]
    LIU Xiaochen, XU Peng, YAO Like, et al. Nb reinforced Fe-Mn-Si shape memory alloy composite coating fabricated by laser cladding on 304 stainless steel surface[J]. Journal of Mechanical Science and Technology, 2022, 36(10): 5027 − 5033. doi: 10.1007/s12206-022-0915-y
    [9]
    WANG Jianhao, YODO Shogo, TATSUMI Hiroaki, et al. Thermal conductivity and reliability reinforcement for sintered microscale Ag particle with AlN nanoparticles additive[J]. Materials Characterization, 2023, 203
    [10]
    HUANG Jiang, ZHU Zhikai, WANG Hao, et al. Effect of WC content on microstructure and properties of CoCrFeNi HEA composite coating on 316L surface via laser cladding[J]. Materials (Basel), 2023, 16(7).
    [11]
    STRAUMAL Boris, KONYASHIN Igor. WC-based cemented carbides with high entropy alloyed binders: A review[J]. Metals, 2023, 13(1): 171. doi: 10.3390/met13010171
    [12]
    ZHAO Yufeng, MIN Byungwon, JIANG Yinfang. 316L reinforced with tungsten carbide particles by laser-directed energy deposition: Interface microstructure and friction-wear performance[J]. Journal of Materials Engineering and Performance, 2024, 33: 8285 − 8298 . doi: 10.1007/s11665-024-09669-z
    [13]
    王星星, 田家豪, 武胜金, 等. WC含量对WC增强镍基复合涂层界面组织的影响[J]. 焊接学报, 2024, 45(1): 40 − 46 doi: 10.12073/j.hjxb.20221025002

    WANG Xingxing, TIAN Jiahao, WU Shengjin, et al. Effect of WC content on the interface microstructure of nickel/tungsten carbide composite brazing coating[J]. Transactions of the China Welding Institution, 2024, 45(1): 40 − 46. doi: 10.12073/j.hjxb.20221025002
    [14]
    LIU Changyu, XU Peng, PANG Chi, et al. Phase transformation in Fe–Mn–Si SMA/WC composite coating developed by laser cladding[J]. Materials Chemistry and Physics, 2021, 267.
    [15]
    袁晓波, 李锋, 王娟, 等. 保护气体对碳化钨药芯焊丝堆焊层组织及性能的影响[J]. 焊接学报, 2017, 38(11): 71 − 76. doi: 10.12073/j.hjxb.20170425003

    YUAN Xiaobo, LI Feng, WANG Juan, et al. Influence of shielding gas on microstructure and properties of tungsten carbide flux-cored wire surfacing layer[J]. Transactions of the China Welding Institution, 2017, 38(11): 71 − 76. doi: 10.12073/j.hjxb.20170425003
    [16]
    ZHANG Qin, WANG Hongyu, ZHU Jian, et al. Effect of B on shape memory properties and microstructure of Fe14Mn6Si9Cr5Ni alloy and its mechanism[J]. Journal of Materials Engineering and Performance, 2025, 34: 1207 − 1214 . doi: 10.1007/s11665-024-09179-y
    [17]
    GERA Dennis, SANTOS Jonadabe, KIMINAMI Cláudio S, et al. Comparison of Cu–Al–Ni–Mn–Zr shape memory alloy prepared by selective laser melting and conventional powder metallurgy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3322 − 3332. doi: 10.1016/S1003-6326(20)65464-4
    [18]
    MANJAIAH M, NARENDRANATH S, BASAVARAJAPPA S. Review on non-conventional machining of shape memory alloys[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 12 − 21. doi: 10.1016/S1003-6326(14)63022-3
    [19]
    董逸君, 王勇刚, 李东亚, 等. 激光熔覆碳化物增强镍基涂层组织与性能的热处理调控[J]. 焊接学报, 2024, 45(10): 59 − 68. doi: 10.12073/j.hjxb.20231221002

    DONG Yijun, WANG Yonggang, LI Dongya, et al. Heat treatment tailoring of microstructure and properties of laser cladding carbide reinforced nickel based coatings[J]. Transactions of the China Welding Institution, 2024, 45(10): 59 − 68. doi: 10.12073/j.hjxb.20231221002
    [20]
    王宏宇, 赵磊, 陈特, 等. 圆管法制备特定填充率三元合金粉芯丝材的配材方法: 中国, 202010265172.7[P]. 2021-12-21.

    WANG Hongyu, ZHAO Lei, CHEN Te, et al. Method for preparing tri-element alloy powder core wire with specific filling rate by round tube method. China, CN202010265172.7 [P ]. 2021-12-21.
    [21]
    王宏宇, 唐第东, 陈胜, 等. 通过调控粉末粒径获得成分准确合金的增材制造用粉芯丝材配材方法: 中国, 202210131857.1[P]. 2022-10-28.

    WANG Hongyu, TANG Didong, CHENG Sheng, et al. Powder core wire material blending method for additive manufacturing with accurate alloy composition obtained by regulating powder particle size. China, 202210131857.1[P]. 2022-10-28.
    [22]
    王宏宇, 黄金雷, 陈胜, 等. 基于Cu-Al-Fe合金的粉芯丝材增材制造理论及其温度场分析[J]. 焊接学报, 2023, 44(4): 111 − 119. doi: 10.12073/j.hjxb.20220519002

    WANG Hongyu, HUANG Jinlei, CHEN Sheng, et al. Analysis of the theory and temperature field of additive manufacturing with powder core wire based on Cu-Al-Fe alloy[J]. Transactions of the China Welding Institution, 2023, 44(4): 111 − 119. doi: 10.12073/j.hjxb.20220519002
    [23]
    吴鹏飞, 魏昕, 苏建修. 碳化钨对Fe基合金激光熔覆层性能的影响[J]. 热加工工艺, 2024(14): 11 − 15.

    WU Pengfei, WEI Xin, SU Jianxiu. Effect of WC on properties of Fe base alloy laser cladding layer[J]. Hot Working Technology, 2024(14): 11 − 15.
    [24]
    张帆. 激光熔覆纳米WC颗粒增强铁基复合涂层的研究[D]. 鞍山: 辽宁科技大学, 2022.

    ZHANG Fan. Research on Laser Cladding Nano WC Particle Reinforced Iron-based Composite Coating [D]. Anshan: Liaoning University of Technology, 2022.
    [25]
    JU Heng, LIN Cheng-xin, ZHANG Jiaqi, et al. Research on residual stress inside Fe-Mn-Si shape memory alloy coating by laser cladding processing[J]. Optoelectronics Letters, 2016, 12(5): 344 − 348. doi: 10.1007/s11801-016-6131-1
    [26]
    ZHANG Qi, XU Peng, ZHA Gangqiang, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding[J]. Optik, 2021, 242.
    [27]
    XU Peng, JU Heng, LIN Chengxin, et al. In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding[J]. Chinese Optics Letters, 2014, 12(4): 041403 − 041405. doi: 10.3788/COL201412.041403
  • Related Articles

    [1]ZHU Jie, ZHOU Qingjun, CHEN Xiaohui, FENG Kai, LI Zhuguo. Influence of layer thickness on the microstructure and mechanical properties of selective laser melting processed GH3625[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(10): 12-17. DOI: 10.12073/j.hjxb.20230306002
    [2]ZHANG Kezhao, CAI Jiameng, LIU Dong, CHEN Jinyi, BAO Yefeng, NIU Hongzhi. Effect of wire feed rate on microstructure and properties of laser welded Ti-3Al-6Mo-2Fe-2Zr joints with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(12): 35-40. DOI: 10.12073/j.hjxb.20211106001
    [3]WANG Henglin, CAO Rui, LI Xiang, CHE Hongyan, WANG Tiejun, QIN Wei. Microstructure and property of flash welded joint of FeCrAl alloy tube[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(3): 37-43. DOI: 10.12073/j.hjxb.20210712002
    [4]LIU Quanming, LONG Weimin, FU Li, ZHONG Sujuan, LI Xiupeng. Tensile properties evolution of hydrogen-induced TA10 titanium alloy welded joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(12): 20-24. DOI: 10.12073/j.hjxb.20200615003
    [5]CHANG Chuanchuan, ZHANG Tiancang, LI Ju, LIU Jianjun. Microstructure and properties of linear friction welded joint of hyperoxia TC4/TC17 dissimilar titanium alloys[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(12): 109-114,120. DOI: 10.12073/j.hjxb.2019400322
    [6]YIN Yan<sup>1</sup>, LIU Pengyu<sup>1</sup>, LU Chao<sup>2</sup>, XIAO Mengzhi<sup>1,3</sup>, ZHANG Ruihua<sup>2,3</sup>. Microstructure and tensile properties of selective laser melting forming 316L stainless steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2018, 39(8): 77-81. DOI: 10.12073/j.hjxb.2018390205
    [7]XU Fei, CHEN Li, LU Wei, GUO Luyun. Effect of heat input on weld appearance for fiber laser welding 6A02 aluminum alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 119-123. DOI: 10.12073/j.hjxb.20150830004
    [8]HE Enguang, GONG Shuili, YANG Tao, CHEN Li. Microstructure and properties of 5A90 Al-Li alloy T-joints by laser welding with filler wire[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2013, (9): 99-102.
    [9]HU Meijuan, LIU Jinhe, KANG Wenjun, RUAN Chengyong. Effects of local heat treatment by electron beam on microstructure and properties of TC4 titanium alloy welded joint[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2008, (2): 104-107.
    [10]ZHAO Hui-jie, HE Song, GENG Hong-bin. Tensile properties and microstructure of LF6 alloy welded joint subjected to thermal cycling[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2004, (1): 33-35,39.
  • Cited by

    Periodical cited type(0)

    Other cited types(5)

Catalog

    Article views (39) PDF downloads (7) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return