Advanced Search
HUANG Hongxing, WU Di, ZENG Da, PENG Biao, SUN Tao, ZHANG Peilei, SHI Haichuan. Quantitative evaluation of spatter in adjustable ring mode laser welding based on In-situ OCT measurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 128-132. DOI: 10.12073/j.hjxb.20240715002
Citation: HUANG Hongxing, WU Di, ZENG Da, PENG Biao, SUN Tao, ZHANG Peilei, SHI Haichuan. Quantitative evaluation of spatter in adjustable ring mode laser welding based on In-situ OCT measurement[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(11): 128-132. DOI: 10.12073/j.hjxb.20240715002

Quantitative evaluation of spatter in adjustable ring mode laser welding based on In-situ OCT measurement

More Information
  • Received Date: July 14, 2024
  • Available Online: October 31, 2024
  • In order to quickly and accurately quantitatively evaluate the metal spatter to optimize the process and ensure the welding quality. This study focuses on the variable beam profile (VBP) laser welding process of 1060 aluminum alloy and develops an in-situ keyhole depth measurement system based on optical coherence tomography (OCT). An innovative 1DCNN-BiLSTM deep learning composite model is proposed, leveraging the distinct characteristics of the two network units to perform local-global temporal feature extraction, achieving quantitative evaluation of spatter status. Results indicate that the constructed model achieves 99.69% accuracy in identifying spatter status, providing guidance and closed-loop feedback for optimizing the VBP laser welding process and quality control.

  • [1]
    Min K E, Jang J W, Kim C. New frontiers of laser welding technology[J]. Applied Sciences, 2023, 13(3): 1840. doi: 10.3390/app13031840
    [2]
    Lassila A A, Lonn D, Andersson T, et al. Effects of different laser welding parameters on the joint quality for dissimilar material joints for battery applications[J]. Optics & Laser Technology, 2024, 177: 111155.
    [3]
    Din N U, Zhang L, Zhou Y, et al. Laser welding defects detection in lithium-ion battery poles[J]. Engineering Science and Technology, an International Journal, 2023, 46: 101495. doi: 10.1016/j.jestch.2023.101495
    [4]
    董金枋, 杨方毅, 吴頔, 等. 可调环模激光焊接飞溅抑制机理及工艺优化研究[J]. 中国激光, 2024, 51(12): 40 − 48.

    Dong Jinfang, Yang Fangyi, Wu Di, et al. Research on spatter suppression mechanism and process optimization of tunable ring-mode laser welding[J]. Chinese Journal of Lasers, 2024, 51(12): 40 − 48.
    [5]
    Niu Y, Gao P P, Gao X. Recognition of DC01 mild steel laser welding penetration status based on photoelectric signal and neural network[J]. Metals, 2023, 13(5): 871. doi: 10.3390/met13050871
    [6]
    Yusof M F M, Quazim M M, Aleem S A A, et al. Identification of weld defect through the application of denoising method to the sound signal acquired during pulse mode laser welding[J]. Welding in the World, 2023, 67(5): 1267 − 1281. doi: 10.1007/s40194-023-01472-z
    [7]
    张琨, 邹宗轩, 刘烨, 等. 铝合金TIG焊接熔池状态多传感器数据协同感知算法[J]. 焊接学报, 2022, 43(3): 50 − 55,116. doi: 10.12073/j.hjxb.20211025001

    Zhang Kun, Zou Zongxuan, Liu Ye, et al. Multi-sensor data cooperative sensing algorithm for molten pool state of aluminum alloy TIG welding[J]. Transactions of the China Welding Institution, 2022, 43(3): 50 − 55,116. doi: 10.12073/j.hjxb.20211025001
    [8]
    Boley M, Fetzer F, Weber R, et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 2019, 119: 56 − 64. doi: 10.1016/j.optlaseng.2019.03.014
    [9]
    Lexuan T, Buitien T, Tranngoc H. A novel approach model design for signal data using 1DCNN combing with LSTM and ResNet for damaged detection problem[J]. Structures, 2024, 59: 105784. doi: 10.1016/j.istruc.2023.105784
    [10]
    白子键, 李治文, 张志芬, 等. 基于电弧光谱的核电堵管TIG焊接质量在线监测[J]. 焊接学报, 2024, 45(5): 8 − 19. doi: 10.12073/j.hjxb.20230610002

    Bai Zijian, Li Zhiwen, Zhang Zhifen, et al. Online monitoring of TIG welding quality of nuclear power plugging pipe based on arc spectroscopy[J]. Transactions of the China Welding Institution, 2024, 45(5): 8 − 19. doi: 10.12073/j.hjxb.20230610002
    [11]
    Victoria A H, Maragatham G. Automatic tuning of hyperparameters using Bayesian optimization[J]. Evolving Systems, 2021, 12(1): 217 − 223. doi: 10.1007/s12530-020-09345-2

Catalog

    Article views (95) PDF downloads (35) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return