Citation: | ZHANG Yonglin, CHENG Huichao, YANG Haifeng, LIU Ning, LIANG Yuandong. Impact toughness influence law and weldability analysis of 800 MPa grade steel for photovoltaic brackets[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240428001 |
Through welding thermal simulation experiments, simulate the welding thermal cycle process of the coarse grain heat affected zone (CGHAZ) of 800 MPa grade steel for photovoltaic brackets under different cooling rates. Observe the microstructure of the thermal simulation sample under an optical microscope(OM) and analyze the influence of cooling rate on the microstructure of CGHAZ; The influence of cooling rate on the toughness of CGHAZ was analyzed by impact test of thermal simulation sample and scanning electron microscope(SEM). The results showed that with the increase of cooling rate, the microstructure of CGHAZ gradually changed from granular bainite(GB) and proeutectoid ferrite(PF) existing at grain boundary to GB and a small amount of lamellar bainite(LB), and finally to all LB. Moreover, with the increase of cooling rate, the impact toughness gradually improves, and the average impact energy gradually increases from 14.33 J to 58 J. The impact fracture morphology gradually changes from a typical brittle fracture morphology to a toughness and cleavage mixed fracture, and finally becomes a clear ductile fracture feature. In addition, considering the high strength of 800 MPa grade steel for photovoltaic brackets, its weldability is indirectly evaluated by the carbon equivalent and the Granville diagram, and its cold crack tendency is evaluated by the cold crack sensitivity index. The analysis results show that its weldability is good, and the welding cold crack tendency is small.
[1] |
许家铭, 靳小虎, 赵春晓. 浅析光伏支架结构用钢[J]. 武汉大学学报(工学版), 2022, 55(S2): 81 − 84.
XU Jiaming, JIN Xiaohu, ZHAO Chunxiao. Brief analysis of steel for photo voltaic support structure[J]. Engineering Journal of Wuhan University, 2022, 55(S2): 81 − 84.
|
[2] |
何荣华, 王夏秋. 耐候钢应用于光伏支架的耐腐蚀优势[J]. 水电站机电技术, 2023, 46(7): 106 − 107,119.
HE Ronghua, WANG Xiaqiu. Corrosion resistance advantages of weathering steel applied to photovoltaic support[J]. Mechanical & Electrical Technique of Hydropower station, 2023, 46(7): 106 − 107,119.
|
[3] |
陈泓业, 杨平, 李伟刚, 等. 光伏支架用420 MPa级高强度钢的研发[J]. 鞍钢技术, 2024(2): 30 − 33. doi: 10.3969/j.issn.1006-4613.2024.02.006
CHEN Hongye, YANG Ping, LI Weigang, et al. Development of 420 MPa High-strength Steel for Photovoltaic Supports[J]. Angang Technology, 2024(2): 30 − 33. doi: 10.3969/j.issn.1006-4613.2024.02.006
|
[4] |
果超, 成生伟, 刘西峰, 等. Ti微合金化400 MPa级光伏支架用钢的开发[J]. 山西冶金, 2024, 47(2): 21 − 22.
GUO Chao, CHENG Shengwei, LIU Xifeng, et al. Development of 400 MPa Grade Ti-microallyed Steel for Photovoltaic Support[J]. Shanxi Metallurgy, 2024, 47(2): 21 − 22.
|
[5] |
孟志杰, 田兴海. 高强钢在光伏支架上的应用[J]. 水电站机电技术, 2022, 45(9): 54 − 56.
MENG Zhijie, TIAN Xinghai. Application of high-strength steel in photovoltaic support[J]. Mechanical & Electrical Technique of Hydropower Station, 2022, 45(9): 54 − 56.
|
[6] |
牛子煜, 段文超, 徐翔. 耐候钢在光伏支架中的应用[J]. 西北水电, 2020(S2): 101 − 102,111.
NIU Ziyu, DUAN Wenchao, XU Xiang. Application of weathering steel in PV supporting brackets[J]. Northwest Hydroelectric, 2020(S2): 101 − 102,111.
|
[7] |
张永林, 安同邦, 郑庆, 等. 屈服强度1400 MPa级低合金超高强钢的SH-CCT曲线及其粗晶热影响区组织[J]. 焊接, 2023(2): 24 − 28. doi: 10.12073/j.hj.20220402001
ZHANG Yonglin, AN Tongbang, ZHENG Qing, et al. The SH-CCT diagram and CGHAZ microstructure of 1400 MPa grade HSLA steel[J]. Welding & Joining, 2023(2): 24 − 28. doi: 10.12073/j.hj.20220402001
|
[8] |
曹志龙, 朱浩, 安同邦, 等. 1400 MPa级超高强钢SH-CCT曲线及其热影响区组织和性能[J]. 焊接学报, 2023, 44(8): 109 − 115. doi: 10.12073/j.hjxb.20220913001
CAO Zhilong, ZHU Hao, AN Tongbang, et al. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1400 MPa ultra high strength steel[J]. Transactions of the China Welding Institution, 2023, 44(8): 109 − 115. doi: 10.12073/j.hjxb.20220913001
|
[9] |
安同邦, 郑庆, 张永林, 等. 1300 MPa级低合金高强钢SH-CCT曲线及冷裂敏感性分析[J]. 焊接学报, 2022, 43(9): 75 − 81. doi: 10.12073/j.hjxb.20220402002
AN Tongbang, ZHENG Qing, ZHANG Yonglin, et al. SH-CCT diagram and cold cracking sensitivity of a 1300 MPa grade high strength low alloy steel[J]. Transactions of the China Welding Institution, 2022, 43(9): 75 − 81. doi: 10.12073/j.hjxb.20220402002
|
[10] |
温长飞, 邓想涛, 王昭东, 等. 1300 MPa级超高强钢临界粗晶热影响区组织和韧性[J]. 钢铁研究学报, 2018, 30(8): 650 − 656.
WEN Changfei, DENG Xiangtao, WANG Zhaodong, et al. Microstructure and toughness of intercritically reheated coarse-grained heat affected zone in a 1300 MPa grade ultra-high strength steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 650 − 656.
|
[11] |
吴昌忠, 陈怀宁, 范闽宁, 等. 1000 MPa级高强钢焊接热影响区组织和韧性[J]. 焊接学报, 2011(5): 97 − 100.
WU Changzhong, CHEN Huaining, FAN Minning, et al. Microstructure and toughness of HAZ in 1000 MPa grade high strength steel joint[J]. Transactions of the China Welding Institution, 2011(5): 97 − 100.
|
[12] |
XIA P P, YANG L Q, WU L E, et al. Thermal simulation of single thermal cycle for high strength steel pipe[J]. China Welding, 2022, 31(4): 59 − 66.
|
[13] |
周桂娟, 童志, 陈晓华, 等. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 164 − 172. doi: 10.11896/cldb.21100169
ZHOU Guijuan, TONG Zhi, CHEN Xiaohua, et al. A review on the welding of X80 pipeline steel and factors affecting weld cracking[J]. Materials Review, 2022, 36(2): 164 − 172. doi: 10.11896/cldb.21100169
|
[14] |
黄重, 张可, 徐党委, 等. Q500qENH桥梁耐候钢CCT曲线的测定及其组织、硬度[J]. 材料热处理学报, 2022, 43(11): 121 − 127.
HUANG Zhong, ZHANG Ke, XU Dangwei, et al. Determination of CCT curve, microstructure and hardness of Q500qENH bridge weathering steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(11): 121 − 127.
|
[15] |
何有洪. 船用超低碳贝氏体钢控轧控冷工艺与组织性能研究[D]. 武汉科技大学, 2023.
HE Youhong. Research on thermo mechanical controlprocess, microstructure and properties ofultra-low carbon bainite steel for hullstructure[D]. Wuhan University of Science and Technology, 2023.
|
[16] |
DE-CASTRO D, ERES-CASTELLANOS A, VIVAS J, et al. Morphological and crystallographic features of granular and lath-like bainite in a low carbon microalloyed steel[J]. Materials Characterization, 2022, 184: 111703. doi: 10.1016/j.matchar.2021.111703
|
[17] |
CHEN D, WANG Z Q, ZHANG Y, et al. Effects of thermo-mechanical treatments on the microstructure and mechanical properties of a 460 MPa grade low carbon bainitic ferrite steel[J]. Materials Science & Engineering A, 2022, 842: 143087.
|
[18] |
周松波, 张莉芹, 胡锋, 等. 超厚高强钢心部组织对断裂机制的影响[J]. 钢铁研究学报, 2022, 34(6): 578 − 587.
ZHOU Songbo, ZHANG Liqin, HU Feng, et al. Effect of center microstructure on fracture mechanism of ultra-thick high strength steel[J]. Journal of Iron and Steel Research, 2022, 34(6): 578 − 587.
|
[19] |
陈焕德, 张淑娟, 刘东升. 桥梁钢板Q500qE焊接粗晶区相变及接头性能[J]. 焊接学报, 2017, 38(7): 123 − 128. doi: 10.12073/j.hjxb.20150702003
CHEN Huande, ZHANG Shujuan, LIU Dongsheng. Phase transformation of CGHAZ and properties of welded joint of Q500qE heavy steel plate for bridges[J]. Transactions of the China Welding Institution, 2017, 38(7): 123 − 128. doi: 10.12073/j.hjxb.20150702003
|
[20] |
胡磊, 张莉芹, 胡锋, 等. 多尺度截面组织对调质海工钢强韧性的影响[J]. 钢铁, 2023, 58(2): 147 − 158.
HU Lei, ZHANG Liqin, HU Feng, et al. Effect of multi-scale cross section microstructure on strength and toughness of quenched and tempered marine steel[J]. Iron and Steel, 2023, 58(2): 147 − 158.
|
[21] |
朱东明, 何江里, 史根豪, 等. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581 − 1588.
ZHU Dongming, HE Jiangli, SHI Genhao, et al. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. Acta Metall Sin, 2022, 58(12): 1581 − 1588.
|
[22] |
李学达, 尚成嘉, 韩昌柴, 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52(9): 1025 − 1035. doi: 10.11900/0412.1961.2015.00610
LI Xueda, SHANG Chengjia, HAN Changchai, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metallurgica Sinica, 2016, 52(9): 1025 − 1035. doi: 10.11900/0412.1961.2015.00610
|
[23] |
刘治文, 贾书君, 杨浩, 等. 热输入对深海X70粗晶区组织和韧性的影响[J]. 河北科技大学学报, 2021, 42(5): 516 − 522. doi: 10.7535/hbkd.2021yx05010
LIU Zhiwen, JIA Shujun, YANG Hao, et al. Effect of heat input on microstructure and toughness of CGHAZ of deep-sea X70[J]. Journal of Hebei University of Science and Technology, 2021, 42(5): 516 − 522. doi: 10.7535/hbkd.2021yx05010
|
[24] |
夏博, 王斌, 张鹏, 等. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341 − 352. doi: 10.11901/1005.3093.2022.462
XIA Bo, WANG Bin, ZHANG Peng, et al. Effect of tempering temperature on microstructure and impact properties of two high-strength leaf spring steels[J]. Chinese Journal of Materials Research, 2023, 37(5): 341 − 352. doi: 10.11901/1005.3093.2022.462
|